pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion

Yuhang Dong , Xiaorui Pan , Feng Li , Dayong Yang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 285 -290.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 285 -290. DOI: 10.1007/s40242-020-9067-8
Article

pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion

Author information +
History +
PDF

Abstract

pH-Responsive DNA assembles have drawn growing attentions owing to their great potential in diverse areas. However, pH-responsive motifs are limited to specific DNA sequences and annealing is usually needed for DNA assemblies; therefore, sequence-independent pH-responsive DNA assembly at room temperature is highly desired as a more general way. Here, we propose a reversible pH-responsive DNA assembly strategy at room-temperature using zwitterion, glycine betaine(GB), as charge-regulation molecules. The reversible assembly and disassembly of DNA nanostructures could be achieved by alternatively regulating the acidic and basic environments in the presence of GB, respectively. In an acidic environment, carboxylate group in GB was protonated and GB was positively charged, which facilitated to shield the inherent electrostatic repulsion of DNA strands. Molecular simulation showed that the newly formed carboxyl group in protonated GB could form hydrogen bonds with bases in DNA to promote the assembly of DNA strands. In a basic solution, carboxylate group in GB was deprotonated and GB was neutral, thus inducing the dissociation of DNA assembly.

Keywords

DNA nanotechnology / Dynamic assembly / pH responsiveness / Zwitterion

Cite this article

Download citation ▾
Yuhang Dong, Xiaorui Pan, Feng Li, Dayong Yang. pH-Responsive Reversible DNA Self-assembly Mediated by Zwitterion. Chemical Research in Chinese Universities, 2020, 36(2): 285-290 DOI:10.1007/s40242-020-9067-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang D Y, Seelig G. Nat. Chem., 2011, 3(2): 103.

[2]

Liu X, Lu C H, Willner I. Acc. Chem. Res., 2014, 47(6): 1673.

[3]

Modi S, Nizak C, Surana S, Halder S, Krishnan Y. Nat. Nanotechnol., 2013, 8(6): 459.

[4]

Han X G, Zhou Z H, Yang F, Deng Z X. J. Am. Chem. Soc., 2008, 130(44): 14414.

[5]

Wang C, Ren J, Qu X. Chem. Commun., 2011, 47(5): 1428.

[6]

Wang Z G, Elbaz J, Willner I. Nano Lett., 2011, 11(1): 304.

[7]

Qi X J, Lu C H, Liu X, Shimron S, Yang H H, Willner I. Nano Lett., 2013, 13(10): 4920.

[8]

Amodio A, Adedeji A F, Castronovo M, Franco E, Ricci F. J. Am. Chem. Soc., 201, 138(39): 12735.

[9]

Green L N, Amodio A, Subramanian H K K, Ricci F, Franco E. Nano Lett., 2017, 17(12): 7283.

[10]

Guo W, Lu C H, Orbach R, Wang F, Qi X J, Cecconello A, Seliktar D, Willner I. Adv. Mater., 2015, 27(1): 73.

[11]

Hu Y, Guo W, Kahn J S, Aleman-Garcia M A, Willner I. Angew. Chem. Int. Ed., 201, 55(13): 4210.

[12]

Cheng E, Xing Y, Chen P, Yang Y, Sun Y, Zhou D, Xu L, Fan Q, Liu D. Angew. Chem. Int. Ed., 2009, 48(41): 7660.

[13]

Idili A, Vallee-Belisle A, Ricci F. J. Am. Chem. Soc., 2014, 136(16): 5836.

[14]

Li F., Tang J., Geng J., Luo D., Yang D., Prog. Polym. Sci., 2019, 98

[15]

Fu W, Tang L, Wei G, Fang L, Zeng J, Zhan R, Liu X, Zuo H, Huang C Z, Mao C. Angew. Chem. Int. Ed., 2019, 58(46): 16405.

[16]

Chen H, Zhang H, Pan J, Cha T G, Li S, Andreasson J, Choi J H. ACS Nano, 201, 10(5): 4989.

[17]

Jungmann R, Liedl T, Sobey T L, Shih W, Simmel F C. J. Am. Chem. Soc., 2008, 130(31): 10062.

[18]

Zhang Z, Song J, Besenbacher F, Dong M, Gothelf K V. Angew. Chem. Int. Ed., 2013, 52(35): 9219.

[19]

Rees W A, Yager T D, Korte J, von Hippel P H. Biochemistry, 1993, 32(1): 137.

[20]

Henke W, Herdel K, Jung K, Schnorr D, Loening S A. Nucleic Acids Res., 1997, 25(19): 3957.

[21]

Kopielski A, Schneider A, Csaki A, Fritzsche W. Nanoscale, 2015, 7(5): 2102.

[22]

Li Y, Song L, Wang B, He J, Li Y, Deng Z, Mao C. Angew. Chem. Int. Ed., 2018, 57(23): 6892.

[23]

Govrin R, Tcherner S, Obstbaum T, Sivan U. J. Am. Chem. Soc., 2018, 140(43): 14206.

[24]

Zipper H, Brunner H, Bernhagen J, Vitzthum F. Nucleic Acids Res., 2004, 32(12): e103.

[25]

Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D. Small, 2018, 14(16): e1800185.

[26]

Li F, Dong Y, Zhang Z, Lv M, Wang Z, Ruan X, Yang D. Biosens. Bioelectron., 2018, 117: 562.

[27]

Dong Y, Yao C, Wang Z, Luo D, Yang D. Science, 2019, 21: 228.

[28]

Colotte M, Coudy D, Tuffet S, Bonnet J. Biopreserv. Biobank., 2011, 9(1): 47.

[29]

Ma C, Wang Y, Zhang P, Shi C. Anal. Biochem., 2017, 530: 1.

[30]

Guinn E J, Pegram L M, Capp M W, Pollock M N, Record M T Jr. Proc. Natl. Acad. Sci. USA, 2011, 108(41): 16932.

[31]

Shao Q, Jiang S. Adv. Mater., 2015, 27(1): 15.

[32]

Portella G, Germann M W, Hud N V, Orozco M. J. Am. Chem. Soc., 2014, 136(8): 3075.

[33]

Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N. J. Phys. Chem. B, 2014, 118(2): 379.

[34]

Sarkar S, Maity A, Sarma Phukon A, Ghosh S, Chakrabarti R. J. Phys. Chem. B, 2019, 123(1): 47.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/