Increasing the Solubility of a Hydrophobic Molecule with Thymine-like Face by DNA via Supramolecular Interaction

Peijun Shi , Zhe Zhang , Mingchun Liu , Teng Sun , Xiaoyan He , Chengde Mao , Liang Fang , Hua Zuo

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 281 -284.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 281 -284. DOI: 10.1007/s40242-020-9063-z
Article

Increasing the Solubility of a Hydrophobic Molecule with Thymine-like Face by DNA via Supramolecular Interaction

Author information +
History +
PDF

Abstract

Poor water-solubility of hydrophobic drugs greatly hampers drug design and creats delivery problems. The traditional way to improve the solubility is to add hydrotropes or excipients to supress aggregations. Here, a novel mechanisim has been proposed based on supramolecular interactions and demonstrated with a small molecule, pyromellitic diimide(PD). This compound contains thymine-like ‘face’ and can interact with adenines through Watson-Crick and Hoogsteen hydrogen-bonding. Given the high water solubility of polyadenines[poly(A)], it is expected that poly(A) will greatly increase the PD solubility. Indeed, such an increased solubility was confirmed by ultraviolet-visible spectroscopy(UV-Vis) and polyacrylamide gel electrophoresis(PAGE) analysis. We believe that this strategy could be used to improve the solubility of other similar hydrophobic molecules.

Keywords

Polyadenine[poly(A)] / Pyromellitic diimide / Hydrogen bond force / Increased solubility

Cite this article

Download citation ▾
Peijun Shi, Zhe Zhang, Mingchun Liu, Teng Sun, Xiaoyan He, Chengde Mao, Liang Fang, Hua Zuo. Increasing the Solubility of a Hydrophobic Molecule with Thymine-like Face by DNA via Supramolecular Interaction. Chemical Research in Chinese Universities, 2020, 36(2): 281-284 DOI:10.1007/s40242-020-9063-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lipinski C A. Am. Pharm. Rev., 2002, 5: 82.

[2]

Müller C E. Chem. Biodivers., 2009, 6: 2071.

[3]

Savjani K T, Gajjar A K, Savjani J K. ISRN Pharm., 2012, 2012: 195727.

[4]

Neuberg C. Biochem. Z., 191, 76: 107.

[5]

Booth J J, Abbott S, Shimizu S. J. Phys. Chem. B, 2012, 116: 14915.

[6]

Saleh A M, El-Khordagui L K. Int. J. Pharmaceut., 1985, 24: 231.

[7]

Kunz W, Holmberg K, Zemb T. Curr. Opin. Colloid In., 201, 22: 99.

[8]

Shimizu S, Matubayasi N. J. Phys. Chem. B, 2014, 118: 10515.

[9]

Jouyban A. J. Pharm. Pharm. Sci., 2008, 11: 32.

[10]

Wong S M, Kellaway I W, Murdan S. Int. J. Pharmaceut., 200, 317: 61.

[11]

Blokhina S, Sharapova A, Ol’khovich M, Churakov A, Perlovich G. J. Mol. Struct., 2019, 1198: 126922.

[12]

Jelkmann M, Leichner C, Menzel C, Kreb V, Bernkop-Schnürch A. Int. J. Pharmaceut., 2019, 570: 118664.

[13]

Li J J, Zhao J S, Tao L, Wang J, Waknis V, Pan D H, Hubert M, Raghavan K, Patel J. Pharm. Res., 2015, 32: 500.

[14]

Babu N J, Nangia A. Cryst. Growth Des., 2011, 11: 2662.

[15]

Carrier R L, Miller L A, Ahmed M. J. Control. Release, 2007, 123: 78.

[16]

Dhakar N K, Caldera F, Bessone F, Cecone C, Pedrazzo A R, Cavalli R, Dianzani C, Trotta F. Carbohyd. Polym., 2019, 224: 115168.

[17]

Shumilin I, Allolio C, Harries D. J. Am. Chem. Soc., 2019, 141(45): 18056.

[18]

Watson J D, Crick F H C. Nature, 1953, 171: 737.

[19]

Choi J, Majima T. Chem. Soc. Rev., 2011, 40: 5893.

[20]

Avakyan N, Greschner A A, Aldaye F, Serpell C J, Toader V, Petitjean A, Sleiman H F. Nature Chem., 201, 8: 368.

[21]

Polak M, Hud N V. Nucleic Acids Res., 2002, 30: 983.

[22]

Persil, Santai C T, Jain S S, Hud N V. J. Am. Chem. Soc., 2004, 126: 8644.

[23]

Yu Z X, Wang H T, Bai B L, Qu S N, Li F, Ran X, Sun J, Jin G B, Li M. Mat. Sci. Eng. C, 2010, 30: 699.

[24]

Guo X G, Watson M D. Macromolecules, 2011, 44: 6711.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/