Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation

Xiuqiang Lu , Hui Lin , Yonggang Zhen , Huanli Dong , Xiaotao Zhang , Wenping Hu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 110 -114.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (1) : 110 -114. DOI: 10.1007/s40242-020-9051-3
Article

Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation

Author information +
History +
PDF

Abstract

Copper/oxalic diamide-promoted dimerization of tetrachlorinated perylene bisimide to construct highly-fused diperylene bisimides through Ullmann coupling and zipper-mode double C-H activation has been developed in this study. This one-step reaction combining homocoupling with C-H activation proceeded smoothly under the action of inexpensive metal-ligand system. This protocol is expected to expand the available synthetic tools for condensed ring systems of perylene bisimide(PBIs).

Keywords

Organic semiconductor / Perylene bisimide / Dimerization / Ullmann homocoupling / C-H activation

Cite this article

Download citation ▾
Xiuqiang Lu, Hui Lin, Yonggang Zhen, Huanli Dong, Xiaotao Zhang, Wenping Hu. Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation. Chemical Research in Chinese Universities, 2020, 36(1): 110-114 DOI:10.1007/s40242-020-9051-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta R K, Sudhakar A A. Langmuir, 2019, 35: 2455.

[2]

Chal P, Shit A, Nandi A K. Chemistry Select, 2018, 3: 3993.

[3]

Jones B A, Ahrens M J, Yoon M, Facchetti A, Marks T J, Wasielewski M R. Angew. Chem., Int. Ed., 2004, 43: 6363.

[4]

Lv A, Puniredd S R, Zhang J, Li Z, Zhu H, Jiang W, Dong H, He Y, Jiang L, Li Y, Pisula W, Meng Q, Hu W, Wang Z. Adv. Mater., 2012, 24: 2626.

[5]

Li Y, Wang Z, Qian H, Shi Y, Hu W. Org. Lett., 2008, 10: 529.

[6]

Gsänger M, Oh J H, Könemann M, Höffken H W, Krause A M, Bao Z, Würthner F. Angew. Chem., Int. Ed., 2010, 49: 740.

[7]

Meng D, Liu G, Xiao C, Shi Y, Zhang L, Jiang L, Baldridge K K, Li Y, Siegel J S, Wang Z. J. Am. Chem. Soc., 2019, 141: 5402.

[8]

Xin R, Feng J, Zeng C, Jiang W, Zhang L, Meng D, Ren Z, Wang Z, Yan S. ACS Appl. Mater. Interfaces, 2017, 9: 2739.

[9]

Liu X, Du X, Wang J, Duan C, Tang X, Heumueller T, Liu G, Li Y, Wang Z, Wang J, Liu F, Li N, Brabec C J, Huang F, Cao Y. Adv. Energy Mater., 2018, 8: 1801699.

[10]

Gupta R K, Dey A, Singh A, Iyer P K, Sudhakar A A. ACS Appl. Electron. Mater., 2019, 1: 1378.

[11]

Lin Z, Li C, Meng D, Li Y, Wang Z. Chem.-Asian J., 201, 11: 2695.

[12]

Cotlet M, Vosch T, Habuchi S, Well T, Müllen K, Hofkens J, Schryver F. J. Am. Chem. Soc., 2005, 127: 9760.

[13]

Schönamsgruber J, Hirsch A. Eur. J. Org. Chem., 2015, 2015: 2167.

[14]

Yan Q, Zhao D. Org. Lett., 2009, 11: 3426.

[15]

Qian H, Wang Z, Yue W, Zhu D. J. Am. Chem. Soc., 2007, 129: 10664.

[16]

Shi Y, Qian H, Li Y, Yue W, Wang Z. Org. Lett., 2008, 10: 2337.

[17]

Qian H, Negri F, Wang C, Wang Z. J. Am. Chem. Soc., 2008, 130: 17970.

[18]

Zhen Y, Qian H, Xiang J, Qu J, Wang Z. Org. Lett., 2009, 11: 3084.

[19]

Zhen Y, Wang C, Wang Z. Chem. Commun., 2010, 46: 1926.

[20]

Lu X, Dong H, He P, Zhang X, Liu J, Meng Q, Jiang L, Wang Z, Zhen Y, Hu W. Asian J. Org. Chem., 2013, 2: 558.

[21]

Zhang J, Tan L, Jiang W, Hu W, Wang Z. J. Mater. Chem. C, 2013, 1: 3200.

[22]

Zhou T, Li B, Wang B. Chem. Commun., 2017, 53: 6343.

[23]

Naota T, Takaya H, Murahashi S I. Chem. Rev., 1998, 98: 2599.

[24]

Chen H, Schlecht S, Semple T C, Hartwig J F. Science, 2000, 287: 1995.

[25]

Key H M, Dydio P, Clark D S, Hartwig J F. Nature, 201, 534: 534.

[26]

Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev., 2019, 119: 2192.

[27]

Sun C L, Li B J, Shi Z J. Chem. Commun., 2010, 46: 677.

[28]

Wang H, Pesciaioli F, Oliveira C A, Warratz S, Ackermann L. Angew. Chem., Int. Ed., 2017, 56: 15063.

[29]

Liu X, Mao G, Qiao J, Xu C, Liu H, Ma J, Sun Z, Chu W. Org. Chem. Front., 2019, 6: 1189.

[30]

Phipps R J, Gaunt M J. Science, 2009, 323: 1593.

[31]

Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. J. Am. Chem. Soc., 2019, 141: 3541.

[32]

Lewis E A, Marcinkowski M D, Murphy C J, Liriano M L, Therrien A J, Pronschinske A, Sykes E C H. Chem. Comm., 2017, 53: 7816.

[33]

Zhang H, Cai Q, Ma D. J. Org. Chem., 2005, 70: 5164.

[34]

Cai Q, He G, Ma D. J. Org. Chem., 200, 71: 5268.

[35]

Cai Q, Zou B, Ma D. Angew. Chem., Int. Ed., 200, 45: 1276.

[36]

Xia S, Gan L, Wang K, Li Z, Ma D. J. Am. Chem. Soc., 201, 138: 13493.

[37]

Ma D, Cai Q. Acc. Chem. Res., 2008, 41: 1450.

[38]

Nunomoto S, Kawakami Y, Yamashita Y. J. Org. Chem., 1983, 48: 1912.

[39]

Li H, Cai G X, Shi Z J. Dalton Transactions, 2010, 39: 10442.

[40]

Posner G H. An Introduction to Synthesis Using Organocopper Reagents, 1980, Weinheim: Wiley

[41]

Sharma P, Rohilla S, Jain N. J. Org. Chem., 2015, 80: 4116.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/