DNA Nanotechnology on Live Cell Membranes

Linlin Yang , Yanyan Miao , Da Han

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 203 -210.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 203 -210. DOI: 10.1007/s40242-020-9036-2
Review

DNA Nanotechnology on Live Cell Membranes

Author information +
History +
PDF

Abstract

Recent developments in DNA nanotechnology have brought various nanoscale structures, devices and functional systems for different applications. As biological barriers with significant functions, cell membranes provide direct interfaces for studying cellular environment and states. So far, DNA nanotechnology engineered on live cell membranes has advanced our fundamental understandings of DNA nanomaterials and facilitated the designs of novel sensing, imaging and therapeutic platforms. In this review, we highlighted strategies and outcomes of using DNA nanotechnology on cell membranes towards various biomedical applications, including biosensing, imaging, cellular function regulations and targeted cancer therapy. Furthermore, we also discussed the challenges and opportunities of DNA nanotechnology on cell membranes towards broader applications.

Keywords

Cell membrane / DNA nanotechnology / Sensing / Imaging / Targeted therapy

Cite this article

Download citation ▾
Linlin Yang, Yanyan Miao, Da Han. DNA Nanotechnology on Live Cell Membranes. Chemical Research in Chinese Universities, 2020, 36(2): 203-210 DOI:10.1007/s40242-020-9036-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Munro S. Cell, 2003, 115(4): 377.

[2]

Singer S J, Nicolson G L. Science, 1972, 175(4023): 720.

[3]

Ren K, Liu Y, Wu J, Zhang Y, Zhu J, Yang M, Ju H. Nat. Commun., 201, 7: 13580.

[4]

Liu Y C, Yen H Y, Chen C Y, Chen C H, Cheng P F, Juan Y H, Chen C H, Khoo K H, Yu C J, Yang P C, Hsu T L, Wong C H. Proc. Natl. Acad. Sci. USA, 2011, 108(28): 11332.

[5]

Yuzwa S A, Shan X, Macauley M S, Clark T, Skorobogatko Y, Vosseller K, Vocadlo D J. Nat. Chem. Biol., 2012, 8(4): 393.

[6]

Chen J, Seeman N C. Nature, 1991, 350(6319): 631.

[7]

Seeman N C. Nature, 2003, 421(6921): 427.

[8]

Rothemund P W K. Nature, 200, 440(7082): 297.

[9]

Ding B, Seeman N C. Science, 200, 314(5805): 1583.

[10]

Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M. Nature, 2009, 459(7245): 414.

[11]

Ke Y, Ong L L, Shih W M, Yin P. Science, 2012, 338(6111): 1177.

[12]

Acuna G P, Möller F M, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Science, 2012, 338(6106): 506.

[13]

Gerling T, Wagenbauer K F, Neuner A M, Dietz H. Science, 2015, 347(6229): 1446.

[14]

Angelin A, Weigel S, Garrecht R, Meyer R, Bauer J, Kumar R K, Hirtz M, Niemeyer C M. Angew. Chem., Int. Ed., 2015, 54(52): 15813.

[15]

Seeman N C. J. Theor. Biol., 1982, 99(2): 237.

[16]

Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829.

[17]

Tay C Y, Yuan L, Leong D T. ACS Nano, 2015, 9(5): 5609.

[18]

Setyawati M I, Kutty R V, Tay C Y, Yuan X, Xie J, Leong D T. ACS Appl. Mater. Interfaces, 2014, 6(24): 21822.

[19]

Meyer R, Niemeyer C M. Small, 2011, 7(22): 3211.

[20]

Douglas S M, Chou J J, Shih W M. Proc. Natl. Acad. Sci. USA, 2007, 104(16): 6644.

[21]

Zhao W, Loh W, Droujinine I A, Teo W, Kumar N, Schafer S, Cui C H, Zhang L, Sarkar D, Karnik R, Karp J M. The FASEB Journal, 2011, 25(9): 3045.

[22]

Ren K, Liu Y, Wu J, Zhang Y, Zhu J, Yang M, Ju H. Nat. Commun., 201, 7(1): 13580.

[23]

Akbari E, Mollica M Y, Lucas C R, Bushman S M, Patton R A, Shahhosseini M, Song J W, Castro C E. Adv. Mater., 2017, 29(46): 1703632.

[24]

Zhao W, Schafer S, Choi J, Yamanaka Y J, Lombardi M L, Bose S, Carlson A L, Phillips J A, Teo W, Droujinine I A, Cui C H, Jain R K, Lammerding J, Love J C, Lin C P, Sarkar D, Karnik R, Karp J M. Nat. Nanotechnol., 2011, 6(8): 524.

[25]

Ying L, Xie N, Yang Y, Yang X, Zhou Q, Yin B, Huang J, Wang K. Chem. Commun., 201, 52(50): 7818.

[26]

Feng G, Luo X, Lu X, Xie S, Deng L, Kang W, He F, Zhang J, Lei C, Lin B, Huang Y, Nie Z, Yao S. Angew. Chem., Int. Ed., 2019, 58(20): 6590.

[27]

Zeng S, Liu D, Li C, Yu F, Fan L, Lei C, Huang Y, Nie Z, Yao S. Anal. Chem., 2018, 90(22): 13459.

[28]

Liu L, Dou C X, Liu J W, Wang X N, Ying Z M, Jiang J H. Anal. Chem., 2018, 90(19): 11198.

[29]

Qiu L, Zhang T, Jiang J, Wu C, Zhu G, You M, Chen X, Zhang L, Cui C, Yu R, Tan W. J. Am. Chem. Soc., 2014, 136(38): 13090.

[30]

Han D, Zhu G, Wu C, Zhu Z, Chen T, Zhang X, Tan W. ACS Nano, 2013, 7(3): 2312.

[31]

Chang X, Zhang C, Lv C, Sun Y, Zhang M, Zhao Y, Yang L, Han D, Tan W. J. Am. Chem. Soc., 2019, 141(32): 12738.

[32]

Peng R, Zheng X, Lyu Y, Xu L, Zhang X, Ke G, Liu Q, You C, Huan S, Tan W. J. Am. Chem. Soc., 2018, 140(31): 9793.

[33]

You M, Peng L, Shao N, Zhang L, Qiu L, Cui C, Tan W. J. Am. Chem. Soc., 2014, 136(4): 1256.

[34]

You M, Lyu Y, Han D, Qiu L, Liu Q, Chen T, Wu C S, Peng L, Zhang L, Bao G, Tan W. Nat. Nanotechnol., 2017, 12(5): 453.

[35]

Xiong X, Liu H, Zhao Z, Altman M B, Lopez-Colon D, Yang C J, Chang L J, Liu C, Tan W. Angew. Chem. Int. Ed., 2013, 52(5): 1472.

[36]

Ke G, Zhu Z, Wang W, Zou Y, Guan Z, Jia S, Zhang H, Wu X, Yang C J. ACS Appl. Mater. Interfaces, 2014, 6(17): 15329.

[37]

Todhunter M E, Jee N Y, Hughes A J, Coyle M C, Cerchiari A, Farlow J, Garbe J C, LaBarge M A, Desai T A, Gartner Z J. Nat. Methods, 2015, 12(10): 975.

[38]

Selden N S, Todhunter M E, Jee N Y, Liu J S, Broaders K E, Gartner Z J. J. Am. Chem. Soc., 2012, 134(2): 765.

[39]

Peng R, Wang H, Lyu Y, Xu L, Liu H, Kuai H, Liu Q, Tan W. J. Am. Chem. Soc., 2017, 139(36): 12410.

[40]

Liang H, Chen S, Li P, Wang L, Li J, Li J, Yang H H, Tan W. J. Am. Chem. Soc., 2018, 140(12): 4186.

[41]

Ang Y S, Li J E J, Chua P J, Ng C T, Bay B H, Yung L Y L. Anal. Chem., 2018, 90(10): 6193.

[42]

Tang Y, Lin Y, Yang X, Wang Z, Le X C, Li F. Anal. Chem., 2015, 87(16): 8063.

[43]

Kurz A, Bunge A, Windeck A K, Rost M, Flasche W, Arbuzova A, Strohbach D, Müller S, Liebscher J, Huster D, Herrmann A. Angew. Chem., Int. Ed., 200, 45(27): 4440.

[44]

Breaker R R, Joyce G F. Chem. Boil., 1994, 1(4): 223.

[45]

Liu J, Lu Y. J. Am. Chem. Soc., 2007, 129(32): 9838.

[46]

Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I. Anal. Chem., 2004, 76(7): 2152.

[47]

Travascio P, Witting P K, Mauk A G, Sen D. J. Am. Chem. Soc., 2001, 123(7): 1337.

[48]

Li J, Lu Y. J. Am. Chem. Soc., 2000, 122(42): 10466.

[49]

Li J, Zheng W, Kwon A H, Lu Y. Nucleic Acids Res., 2000, 28(2): 481.

[50]

Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin D M. Angew. Chem., Int. Ed., 2008, 47(23): 4346.

[51]

Liu J, Lu Y. Angew. Chem., Int. Ed., 2007, 46(40): 7587.

[52]

Zhang J, Lan T, Lu Y. Adv. Healthc. Mat., 2019, 8(6): 1801158.

[53]

Zhang J. Catalysts, 2018, 8(11): 550.

[54]

Choi J, Kim S, Tachikawa T, Fujitsuka M, Majima T. J. Am. Chem. Soc., 2011, 133(40): 16146.

[55]

Day H A, Pavlou P, Waller Z A E. Bioorgan. Med. Chem., 2014, 22(16): 4407.

[56]

Zhang G, Surwade S P, Zhou F, Liu H. Chem. Soc. Rev., 2013, 42(7): 2488.

[57]

Chao J, Liu H, Su S, Wang L, Huang W, Fan C. Small, 2014, 10(22): 4626.

[58]

Zadegan R M, Norton M L. Int. J. Mol. Sci., 2012, 13(6): 7149.

[59]

Ke Y, Castro C, Choi J H. Annu. Rev. Biomed. Eng., 2018, 20: 375.

[60]

Burns J R, Seifert A, Fertig N, Howorka S. Nat. Nanotechnol., 201, 11(2): 152.

[61]

Gopfrich K, Li C Y, Mames I, Bhamidimarri S P, Ricci M, Yoo J, Mames A, Ohmann A, Winterhalter M, Stulz E, Aksimentiev A, Keyser U F. Nano Lett., 2017, 17(7): 4548.

[62]

Seifert A, Goepfrich K, Burns J R, Fertig N, Keyser U F, Howorka S. ACS Nano, 2015, 9(2): 1117.

[63]

Burns J R, Goepfrich K, Wood J W, Thacker V V, Stulz E, Keyser U F, Howorka S. Angew. Chem., Int. Ed., 2013, 52(46): 12069.

[64]

Ohmann A, Li C Y, Maffeo C, Al Nahas K, Baumann K N, Göpfrich K, Yoo J, Keyser U F, Aksimentiev A. Nat. Commun., 2018, 9(1): 2426.

[65]

Akbari E, Mollica M Y, Lucas C R, Bushman S M, Patton R A, Shahhosseini M, Song J W, Castro C E. Adv. Mater., 2017, 29(46): 1703632.

[66]

Wang K S, Kim H T, Nikiforow S, Heubeck A T, Ho V T, Koreth J, Alyea E P, Armand P, Blazar B R, Soiffer R J, Antin J H, Cutler C S, Ritz J. Blood, 2017, 130(26): 2889.

[67]

Sengers B G, McGinty S, Nouri F Z, Argungu M, Hawkins E, Hadji A, Weber A, Taylor A, Sepp A. MAbs, 201, 8(5): 905.

[68]

Kokla A, Blouchos P, Livaniou E, Zikos C, Kakabakos S E, Petrou P S, Kintzios S. J. Mol. Recognit., 2013, 26(12): 627.

[69]

Bino T, Frey J L, Ortaldo J R. Cell. Immunol., 1992, 142(1): 28.

[70]

Zhang K, Hao L, Hurst S J, Mirkin C A. J. Am. Chem. Soc., 2012, 134(40): 16488.

[71]

Rudchenko M, Taylor S, Pallavi P, Dechkovskaia A, Khan S, Butler V P Jr., Rudchenko S, Stojanovic M N. Nat. Nanotechnol., 2013, 8(8): 580.

[72]

Keefe A D, Pai S, Ellington A. Nature Reviews Drug Discovery, 2010, 9(8): 537.

[73]

Rusconi C P, Roberts J D, Pitoc G A, Nimjee S M, White R R, Quick G, Scardino E, Fay W P, Sullenger B A. Nat. Biotechnol., 2004, 22(11): 1423.

[74]

Famulok M, Hartig J S, Mayer G. Chem. Rev., 2007, 107(9): 3715.

[75]

Zhu H, Li J, Zhang X B, Ye M, Tan W. ChemMedChem, 2015, 10(1): 39.

[76]

Tuerk C, Gold L. Science, 1990, 249(4968): 505.

[77]

Ellington A D, Szostak J W. Nature, 1990, 346(6287): 818.

[78]

Liu Q, Jin C, Wang Y, Fang X, Zhang X, Chen Z, Tan W. NPG Asia Materials, 2014, 6(4): e95.

[79]

Yang L, Zhang X, Ye M, Jiang J, Yang R, Fu T, Chen Y, Wang K, Liu C, Tan W. Adv. Drug Deliver. Rev., 2011, 63(14): 1361.

[80]

Brody E N, Gold L. Rev. Mol. Biotechnol., 2000, 74(1): 5.

[81]

Wang Y M, Wu Z, Liu S J, Chu X. Anal. Chem., 2015, 87(13): 6470.

[82]

Wu X R, Wu C W, Zhang C. Chinese J. Polym. Sci., 2017, 35(1): 1.

[83]

Lee D S, Qian H, Tay C Y, Leong D T. Chem. Soc. Rev., 201, 45(15): 4199.

[84]

Angell C, Xie S, Zhang L, Chen Y. Small, 201, 12(9): 1117.

[85]

Jones M R, Seeman N C, Mirkin C A. Science, 2015, 347(6224): 1260901.

[86]

Chao J, Zhu D, Zhang Y, Wang L, Fan C. Biosens. Bioelectron., 201, 76: 68.

[87]

Ni X, Castanares M, Mukherjee A, Lupold S E. Curr. Med. Chem., 2011, 18(27): 4206.

[88]

Lee J F, Stovall G M, Ellington A D. Curr. Opin. Chem. Biol., 200, 10(3): 282.

[89]

Tasset D M, Kubik M F, Steiner W. J. Mol. Biol., 1997, 272(5): 688.

[90]

Bock L C, Griffin L C, Latham J A, Vermaas E H, Toole J J. Nature, 1992, 355(6360): 564.

[91]

Trusolino L, Bertotti A, Comoglio P M. Nat. Rev. Mol. Cell Bio., 2010, 11(12): 834.

[92]

Organ S L, Tsao M S. Ther. Adv. Med. Oncol., 2011, 3(1): 7.

[93]

Wang L, Liang H, Sun J, Liu Y, Li J, Li J, Li J, Yang H. J. Am. Chem. Soc., 2019, 141(32): 12673.

[94]

Shaw A, Lundin V, Petrova E, Fordos F, Benson E, Al-Amin A, Herland A, Blokzijl A, Hogberg B, Teixeira A I. Nat. Methods, 2014, 11(8): 841.

[95]

Zhang K, Deng R, Sun Y, Zhang L, Li J. Chem. Sci., 2017, 8(10): 7098.

[96]

Dougherty T J, Gomer C J, Henderson B W, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. JNCI: J. Natl. Cancer I., 1998, 90(12): 889.

[97]

Idris N M, Gnanasammandhan M K, Zhang J, Ho P C, Mahendran R, Zhang Y. Nat. Med., 2012, 18(10): 1580.

[98]

Bugaj A M. Photoch. Photobio. Sci., 2011, 10(7): 1097.

[99]

Wang J, Zhu G, You M, Song E, Shukoor M I, Zhang K, Altman M B, Chen Y, Zhu Z, Huang C Z, Tan W. ACS Nano, 2012, 6(6): 5070.

[100]

Lacroix A, Edwardson T G W, Hancock M A, Dore M D, Sleiman H F. J. Am. Chem. Soc., 2017, 139(21): 7355.

[101]

Osborn M F, Coles A H, Biscans A, Haraszti R A, Roux L, Davis S, Ly S, Echeverria D, Hassler M R, Godinho B M D C, Nikan M, Khvorova A. Nucleic Acids Res., 2018, 47(3): 1070.

[102]

Palte M J, Raines R T. J. Am. Chem. Soc., 2012, 134(14): 6218.

[103]

Xiong X, Liu H, Zhao Z, Altman M B, Lopez-Colon D, Yang C J, Chang L J, Liu C, Tan W. Angew. Chem., Int. Ed., 2013, 52(5): 1472.

AI Summary AI Mindmap
PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/