Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates

Jinjin Zhu , Yingxu Shang , Haiyin Yu , Na Li , Baoquan Ding

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 171 -176.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (2) : 171 -176. DOI: 10.1007/s40242-020-9035-3
Review

Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates

Author information +
History +
PDF

Abstract

DNA nanotechnology enables precise organization of nanoscale objects with extraordinarily structural programmability. Self-assembled DNA nanostructures possess a lot of interesting features, such as designable size and shape, and structural addressability at nanometer scale. Taking advantage of these properties, DNA nanostructures could work as templates or molds for the controllable synthesis of functional nanomaterials, such as organic macromolecules, metallic or inorganic nonmetallic nanomaterials. In this review, we summarize the recent progress in the shape-controllable synthesis of functional nanomaterials on DNA templates. The potential application fields of these nanomaterials are also discussed.

Keywords

DNA origami / Templated synthesis / Organic macromolecule / Metallic nanomaterial / Inorganic nonmetallic nanomaterial

Cite this article

Download citation ▾
Jinjin Zhu, Yingxu Shang, Haiyin Yu, Na Li, Baoquan Ding. Shape-controllable Synthesis of Functional Nanomaterials on DNA Templates. Chemical Research in Chinese Universities, 2020, 36(2): 171-176 DOI:10.1007/s40242-020-9035-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J F, Geng Y L, Elisabeth P, Shailendra G, Ashton J R, John N Harb, Adam T W. ACS Nano, 2011, 5(3): 2240.

[2]

Cui Y, Lauhon L J, Gudiksen M S, Wang J, Lieber C M. Appl. Phys. Lett., 2001, 78(15): 2214.

[3]

Park W I, Zheng G, Jiang X, Tian B, Lieber C M. Nano lett., 2008, 8(9): 3004.

[4]

Cui Q H, Zhao Y S, Yao J. Adv. Mater, 2014, 26(40): 6852.

[5]

Zhao Y S, Wu J, Huang J. J. Am. Chem. Soc., 2009, 131(9): 3158.

[6]

Liu N, Liedl T. Chem. Rev., 2018, 118(6): 3032.

[7]

Liu J, Bu W, Zhang S, Chen F, Xing H, Pan L, Zhou L, Peng W, Shi J. Chem.: Eur. J., 2012, 18(8): 2335.

[8]

Zhou C, Xin L, Duan X Y, Urban M, Liu N. Nano Lett., 2018, 18(11): 7395.

[9]

Palmer R E, Pratontep S, Boyen H G. Nat. Mater., 2003, 2(7): 443.

[10]

Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L, Vittorio M D, Calabi F, Cingolani R, Rinaldi R. Nat. Nanotech., 200, 1(2): 126.

[11]

Koh A L, Fernández-Domínguez A I, McComb D W, Maier S A, Yang J K. Microsc. Microana., 2011, 17(S2): 764.

[12]

Zanchet D, Micheel C M, Parak W J, Gerion D, Alivisatos A P. Nano Lett., 2001, 1(1): 32.

[13]

Dittmer W U, Simmel F C. Appl. Phys. Lett., 2004, 85(4): 633.

[14]

Chen Y J, Benjamin G, Muscat R A, Georg S. Nat. Nanotech., 2015, 10(9): 748.

[15]

Kallenbach N R, Ma R I, Seeman N C. Nature, 1983, 305(5937): 829.

[16]

Seeman N C. J. Theor. Bio., 1982, 99(2): 237.

[17]

Winfree E, Liu F, Wenzler L A, Seeman N C. Nature, 1998, 394(6693): 539.

[18]

Rothemund P W. Nature, 200, 440(7082): 297.

[19]

Liu W, Zhong H, Wang R, Seeman N C. Angew. Chem. Int. Ed., 2011, 50(1): 264.

[20]

Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M. Nucleic. Acids. Res., 2009, 37(15): 5001.

[21]

Kuzuya A., Komiyama M., Chem. Commun., 2009, (28), 4182

[22]

Zhao Z, Yan H, Liu Y. Angew. Chem. Int. Edit., 2010, 49(8): 1414.

[23]

Pei H, Zuo X, Zhu D, Huang Q, Fan C H. Accounts Chem. Res., 2013, 47(2): 550.

[24]

Schnitzler T, Herrmann A. Accounts Chem. Res., 2012, 45(9): 1419.

[25]

Liang H, Zhang X B, Lv Y H, Gong L, Wang R W, Zhu X Y, Yang R H, Tan W H. Accounts Chem. Res., 2014, 47(6): 1891.

[26]

Mao X, Chen G, Wang Z, Zhang Y, Zhu X, Li G. Chem. Sci., 2018, 9(4): 811.

[27]

Lu Y, Liu J. Curr. Opin. Biotech., 200, 17(6): 580.

[28]

Kim B S, Lee S W, Yoon H, Strano M S, Yang S H, Hammond P T. Chem. Mater., 2010, 22(16): 4791.

[29]

Li D, Huang J X, Kaner R B. Acc. Chem. Res., 2009, 42(1): 135.

[30]

Kane-Maguire L A P, Wallace G G. Chem. Soc. Rev., 2010, 39(7): 2545.

[31]

Wei Z, Faul C F J. Macromol. Rapid. Comm., 2010, 29(4): 280.

[32]

Ma Y F, Zhang J, Zhang G, He H. J. Am. Chem. Soc., 2004, 126(22): 7097.

[33]

Xu P, Singh A, Kaplan D L. Adv. Polym. Sci., 2005, 194(1): 69.

[34]

Lin H K, Chen S A. Macromolecules, 2000, 33(22): 8117.

[35]

Bae W J, Kim K H, Park Y H, Jo W H. Chem. Commun., 2003, 22(22): 2768.

[36]

Li W G, McCarthy P A, Liu D G, Huang J Y, Wang H L. Macromolecules, 2002, 35(27): 9975.

[37]

Wang W, Lu X, Li Z, Lei J, Wang C. Adv. Mater., 2011, 23(43): 5109.

[38]

Wang Z G, Zhan P F, Ding B Q. ACS Nano, 2013, 7(2): 1591.

[39]

Wang Z G, Liu Q, Ding B Q. Chem. Mater., 2014, 26(11): 3364.

[40]

Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318(5849): 426.

[41]

Tokura Y, Harvey S, Chen C, Wu Y, Ng D Y W, Weil T. Angew. Chem. Int. Ed., 2018, 57: 1587.

[42]

Tokura Y, Harvey S, Xu X, Chen C, Morsbach S, Wunderlich K, Fytas G, Wu Y, Ng D Y W, Weil T. Chem. Commun., 2018, 54: 2808.

[43]

Zhou C, Yang Y R, Dong Y C, Wu F, Wang D M, Xin L, Liu D S. Adv. Mater., 201, 28: 9819.

[44]

Dong Y C, Yang Y R, Zhang Y Y, Wang D M, Wei X X, Banerjee S, Liu Y, Yang Z Q, Yan H, Liu D S. Angew. Chem. Int. Ed., 2017, 56: 1586.

[45]

Zhang Z, Yang Y, Pincet F, Llaguno M C, Lin C X. Nat. Chem., 2017, 9(7): 653.

[46]

Perrault S T, Shih W M. ACS Nano, 2014, 8(5): 5132.

[47]

Zhao Z, Zhang M, Hogle J M, Shih W M, Wagner G, Nasr M L. J. Am. Chem. Soc., 2018, 140: 10639.

[48]

Yang Y, Wang J, Shigematsu H, Xu W M, Shih W M, Rothman J E, Lin C X. Nature Chemistry, 201, 8(5): 476.

[49]

Burley G A, Gierlich J, Mofid M R, Nir H, Tal S, Eichen Y, Carell T. J. Am. Chem. Soc., 200, 128(5): 1398.

[50]

Richter J, Seidel R, Kirsch R, Mertig M, Pompe W, Plaschke J, Schackert H K. Adv. Mater., 2010, 12(7): 507.

[51]

Ford W E, Harnack O, Yasuda A, Wessels J M. Adv. Mater., 2010, 13(23): 1793.

[52]

Park S H, Prior M W, LaBean T H, Finkelstein G. Appl. Phys. Lett., 200, 89(3): 033901.

[53]

Liu D, Park S H, Reif J H, LaBean T H. Proc. Natl. Acad. Sci. USA, 2004, 101(3): 717.

[54]

Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998, 391(6669): 775.

[55]

Fischler M, Simon U, Nir H, Eichen Y, Burley G A, Gierlich J. Small, 2007, 3(6): 1049.

[56]

Mbindyo J K N, Reiss B D, Martin B R, Keating C D, Natan M J, Mallouk T E. Adv. Mater., 2001, 13(4): 249.

[57]

Patolsky F, Weizmann Y, Lioubashevski O, Willner I. Angew. Chem. Int. Ed., 2002, 41(13): 2323.

[58]

Nguyen K, Monteverde M, Filoramo A, Bourgoin J P. Adv. Mater., 2008, 20(6): 1099.

[59]

Antipina M N, Gainutdinov R V, Rachnyanskaya A A, Tolstikhina A L, Yurova T V, Khomutov G B. Surf. Sci., 2003, 532(3): 1025.

[60]

Suchetan P, Reji V, Deng Z T, Zhao Z, Ashok K, Yan H, Liu Y. Angew. Chem. Int. Ed., 2011, 50(18): 4176.

[61]

Wang Z G, Liu Q, Li N, Ding B Q. Chem. Mater., 201, 28(23): 8834.

[62]

Schreiber R, Kempter S, Holler S, Schüller V, Schiffels D, Simmel S S, Nickels P C, Liedl T. Small, 2011, 7(13): 1795.

[63]

Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P. Science, 2014, 346(6210): 1258361.

[64]

Helmi S, Ziegler C, Kauert D J, Seidel R. Nano Lett., 2014, 14(11): 6693.

[65]

Li N, Shang Y X, Xu R, Jiang Q, Liu J B, Wang L, Cheng Z H, Ding B Q. J. Am. Chem. Soc., 2019, 141: 17968.

[66]

Liu B, Cao Y Y, Che S A. Angew. Chem. Int. Ed., 2013, 52(52): 14186.

[67]

Jin C, Han L, Che S. Angew. Chem. Int. Ed., 2009, 48(49): 9268.

[68]

Liu B, Han L, Che S. Angew. Chem. Int. Ed., 2012, 51(4): 923.

[69]

Cao Y, Kao K, Mou C, Han L, Che S. Angew. Chem. Int. Ed., 201, 55: 2037.

[70]

Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C H. Nature, 2018, 559(7715): 593.

[71]

Nguyen L, Döblinger M, Liedl T, Heuer-Jungemann A. Angew. Chem. Int. Ed., 2018, 58(3): 912.

[72]

Auyeung E, Macfarlane R J, Choi C H J, Cutler J I, Mirkin C A. Adv. Mater., 2012, 24(38): 5181.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/