Ball-milling Synthesis of Tetrahydroquinolines via ‘One-pot’ Three-component Diels-Alder Reaction Catalyzed by Phosphotungstic Acid

Zeyou Wang , Guodong Shen , Xianqiang Huang , Shuwen Gong , Bingchuan Yang , Zhenzhen Sun , Zuhao Zhang , Wanxing Liu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 835 -842.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 835 -842. DOI: 10.1007/s40242-020-9019-3
Article

Ball-milling Synthesis of Tetrahydroquinolines via ‘One-pot’ Three-component Diels-Alder Reaction Catalyzed by Phosphotungstic Acid

Author information +
History +
PDF

Abstract

We reported an economic and practical ball-milling method for the synthesis of tetrahydroquinoline derivatives via a ‘one-pot’ three-component Diels-Alder reaction of anilines, aldehydes and alkenes catalyzed by phosphotungstic acid at room temperature. For this reaction, a simple “one-pot” ball-milling operation was conducted, readily available starting materials were employed, ‘one-pot’ conditions were applied, and the most important was to use inexpensive and environmentally friendly catalyst phosphotungstic acid. Various tetrahydroquinolines, which might be potentially applicable in the pharmaceutical and biochemical areas, were conveniently synthesized in moderate to excellent yields.

Keywords

Ball-milling / Diels-Alder reaction / Phosphotungstic acid / Tetrahydroquinoline

Cite this article

Download citation ▾
Zeyou Wang, Guodong Shen, Xianqiang Huang, Shuwen Gong, Bingchuan Yang, Zhenzhen Sun, Zuhao Zhang, Wanxing Liu. Ball-milling Synthesis of Tetrahydroquinolines via ‘One-pot’ Three-component Diels-Alder Reaction Catalyzed by Phosphotungstic Acid. Chemical Research in Chinese Universities, 2020, 36(5): 835-842 DOI:10.1007/s40242-020-9019-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wallace O B, Lauwers K S, Jones S A, Dodge A. Bioorg. Med. Chem. Lett., 2003, 13: 1907.

[2]

Singer J M, Barr B M, Coughenour L L, Walters M A. Bioorg. Med. Chem. Lett., 2005, 15: 4560.

[3]

Díaz J L, Christmann U, Fernández A, Luengo M, Bordas M, Enrech R, Carro M, Pascual R, Burgueño J, Merlos M, Benet-Buchholz J, Cerón-Bertran J, Ramírez J, Reinoso R F, Fernández de Henestrosa A R, Vela J M, Almansa C. J. Med. Chem., 2013, 56: 3656.

[4]

Quan M L, Wong P C, Wang C, Woerner F, Smallheer J M, Barbera F A, Bozarth J M, Brown R L, Harpel M R, Luettgen J M, Morin P E, Peterson T, Ramamurthy V, Rendina A R, Rossi K A, Watson C A, Wei A, Zhang G, Seiffert D, Wexler R R. J. Med. Chem., 2014, 57: 955.

[5]

Wang W B, Lu S M, Yang P Y. J. Am. Chem. Soc., 2003, 125: 10536.

[6]

Lu S M, Han X W, Zhou Y G. Adv. Synth. Cata1., 2004, 346: 909.

[7]

Reetz M T, Li X G. Chem. Commun., 200, 20: 2159.

[8]

Zhou H F, Li Z W, Wang Z J. Angew. Chem. In Ed., 2008, 47: 8464.

[9]

Sridharan V, Suryavanshi P A, Menéndez J C. Chem. Rev., 2011, 111: 7157.

[10]

Povarov L S. Russ. Chem. Rev., 1967, 36: 656.

[11]

Savitha G, Perumal P T. Tetrahedron Lett., 200, 47: 3589.

[12]

Kawabata T, Kato M, Mizugaki T, Ebitani K, Kaneda K. Chem. Eur. J., 2005, 11: 288.

[13]

Li H Y, Horn J, Campbell A, House D, Nelson A, Marsden S P. Chem. Commun., 2014, 50: 10222.

[14]

Tan Y J, Zhang Z, Wang F J, Wu H H, Li Q H. RSC Adv., 2014, 4: 35635.

[15]

Imrich H G, Conrad J, Bubrin D, Beifuss U. J. Org. Chem., 2015, 80: 2319.

[16]

Huang Y H, Wang S R, Wu D P, Huang P Q. Org. Lett., 2019, 21: 1681.

[17]

Babu G, Perumal P T. Tetrahedron Lett., 1998, 39: 3225.

[18]

Crousse B., Bégué J., Bonnet-Delpon D., J Org. Chem., 2000, 65

[19]

Sundararajan G, Prabagaran N, Varghese B. Org. Lett., 2001, 3: 1973.

[20]

Lin X F, Cui S L, Wang Y G. Tetrahedron Lett., 200, 47: 4509.

[21]

Cheng D, Zhou J, Saiah E. Org. Lett., 2002, 4: 4411.

[22]

Stevenson P J, Nieuwenhuyzen M, Osborne D. Chem. Commun., 2002 444.

[23]

Yamanaka M, Nishida A, Nakagana M. Org. Lett., 2000, 2: 159.

[24]

Ishitani H, Kobayashi S. Tetrahedron Lett., 199, 37: 7357.

[25]

Muhuhi J, Spaller M R. J. Org. Chem., 200, 71: 5517.

[26]

Nagarajan R, Chitra S, Perumal P T. Tetrahedron, 2001, 57: 3419.

[27]

Srinivas K V N S, Das B. Synlett., 2004, 10: 1715.

[28]

Nagaiah K, Sreenu D, Rao R S, Vashishta G, Yadav J S. Tetra-hedron Lett., 200, 47: 4409.

[29]

Su M S, Ji X J, Zhao B B, Tian M, Ma J J. J. Chem. Soc. Paki-stan, 2015, 37: 1130.

[30]

Liu Q, Zhao G H, Dai Y F, Ma N, Dai W. Rsc. Adv., 2019, 9: 9106.

[31]

Wang G W, Shen Y B, Wu X L. Eur. J. Org Chem., 2008, 29: 4999.

[32]

Zillillah M T A, Li Z. Green. Chem., 2014, 16: 1202.

[33]

Bhattacharya S, Ayass W W, Taffa D H, Schneemann A, Semrau A L, Wannapaiboon S, Altmann P J, Pöthig A, Nisar T, Balster T, Burtch N C, Wagner V, Fischer R A, Wark M, Ulrich K. J. Am. Chem. Soc., 2019, 1418: 3385.

[34]

Huang X Q, Li J K, Shen G D, Xin N N, Lin Z G, Chi Y N, Dou J M, Li D C, Hu C W. Dalton Trans., 2018, 47: 726.

[35]

Huang X Q, Zhang X M, Zhang D, Yang S, Feng X, Li J K, Lin Z G, Cao J, Pan R, Chi Y N, Wang B, Hu C W. Chem. A Eur. J., 2014, 20: 2557.

[36]

Boldyreva E. Chem. Soc. Rev., 2013, 42: 7719.

[37]

Takacs L. Chem. Soc. Rev., 2013, 42: 7649.

[38]

Zhu S E, Li F, Wang G W. Chem. Soc. Rev., 2013, 42: 7535.

[39]

Chen L R, Lemma B E, Rich J S, Mack J. Green Chem., 2014, 16: 1101.

[40]

Meng X, Bi X R, Yu C Y, Chen G X, Chen B H, Jing Z Q, Zhao P Q. Green Chem., 2018, 20: 4638.

[41]

Düvel A. Dalton. Trans., 2019, 48: 859.

[42]

Shen G D, Zhao L Y, Wang Y C, Xia W F, Yang M S, Zhang T X. RSC Adv., 201, 6: 84748.

[43]

Shen G D, Yang B C, Huang X Q, Hou Y X, Gao H, Cui J C, Cui C S, Zhang T X. J. Org. Chem., 2017, 82: 3798.

[44]

Shen G D, Zhao L Y, Zhao X L, Huangfu X L, Li Z, Wang R, Zhang T X. Synlett., 2017, 28: 1111.

[45]

Shen G D, Zhao L Y, BA O W L. Chem. Res. Chinese Universities, 201, 32(6): 947.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/