Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers

Yuying Ma , Dayong He , Jiadi Liu , Yuannan Wang , Mei Yang , Hao Wang , Ju Qiu , Wenyan Li , Yongxin Li , Ce Wang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 428 -435.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 428 -435. DOI: 10.1007/s40242-020-0357-y
Article

Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers

Author information +
History +
PDF

Abstract

Low density and high porosity polyacrylonitrile(PAN) nanofibers prepared by electrospinning were used as brackets for photocatalyst W18O49 to prepare a kind of light weight and easy recycling water purification material for the first time. The influence of tungsten source concentration on the formation of W18O49 during a solvothermal process was systematically investigated. The prepared PAN@W18O49 nanofibers(NFs) utilize the outstanding visible light photocatalytic performance and the adsorption performance of W18O49, and at the same time give the advantages of low density and easy recyclability. The pollutant removal performance of the composite nanofibers was investigated by using five contaminants including rhodamine B(RhB), methylene blue(MB), malachite green(MG), methyl orange(MO) and chlortetracycline(CTC) as substrates. Among them, the degradation process of rhodamine B has been studied in detail. After five cycles, the degradation efficiency did not decrease significantly, showing excellent reusability of PAN@W18O49 NFs. Besides, the adsorption performance of PAN@W18O49 NFs during the photocatalytic process was also studied in detail. Compared with recently reported literature, the degradation efficiency of organic pollutants by PAN@W18O49 NFs showed better performance, and PAN@W18O49 NFs felt had a promising prospect in the field of degradation of contaminants.

Keywords

Photocatalysis / Adsorption / Electrospinning / Solvothermal reaction / Dye degradation

Cite this article

Download citation ▾
Yuying Ma, Dayong He, Jiadi Liu, Yuannan Wang, Mei Yang, Hao Wang, Ju Qiu, Wenyan Li, Yongxin Li, Ce Wang. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W18O49 Nanofibers. Chemical Research in Chinese Universities, 2021, 37(3): 428-435 DOI:10.1007/s40242-020-0357-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J, Wei Y, Li P, Zhao Y, Zou R. The Journal of Physical Chemistry C, 2017, 121(24): 13249.

[2]

Le-Clech P, Chen V, Fane T A G. Journal of Membrane Science, 200, 284(1/2): 17.

[3]

Hunge Y M, Yadav A A, Mathe V L. Journal of Materials Science: Materials in Electronics, 2018, 29(8): 6183.

[4]

Materials(Basel), 2020, 13(8):

[5]

Pereira R A, Pereira M F R, Alves M M, Pereira L. Applied Catalysis B: Environmental, 2014, 144: 713.

[6]

Wang J, Li H B, Li A M, Shuang C D, Zhou Q. Chem. Eng. J., 2014, 253: 237.

[7]

Sridewi N, Lee Y-F, Sudesh K. International Journal of Photoenergy, 2011, 2011: 1.

[8]

Ranjith K S, Satilmis B, Uyar T. Mater. Today, 2018, 21(9): 989.

[9]

Du F, Sun L, Huang Z, Chen Z, Xu Z, Ruan G, Zhao C. Chemosphere, 2020, 239: 124764.

[10]

Choi H G, Jung Y H, Kim D K. J. Am. Ceram. Soc., 2005, 88(6): 1684.

[11]

Lee K, Seo W S, Park J T. J. Am. Chem. Soc., 2003, 125(12): 3408.

[12]

Guo C S, Yin S, Yan M, Kobayashi M, Kakihana M, Sato T. Inorg. Chem., 2012, 51(8): 4763.

[13]

Chen X B, Liu L, Yu P Y, Mao S S. Science, 2011, 331(6018): 746.

[14]

Bai H, Yi W C, Liu J Y, Lv Q, Zhang Q, Ma Q, Yang H F, Xi G C. Nanoscale, 201, 8(28): 13545.

[15]

Jia C C, Zhang X, Matras-Postolek K, Huang B B, Yang P. Carbon, 2018, 139: 415.

[16]

Huang Z F, Song J J, Pan L, Lv F L, Wang Q F, Zou J J, Zhang X W, Wang L. Chem. Commun., 2014, 50(75): 10959.

[17]

Bai H, Su N, Li W T, Zhang X, Yan Y, Li P, Ouyang S X, Ye J H, Xi G C. Journal of Materials Chemistry A, 2013, 1(20): 6125.

[18]

Sun S B, Chang X T, Dong L H, Zhang Y D, Li Z J, Qiu Y Y. J. Solid State Chem., 2011, 184(8): 2190.

[19]

Xu M, Jia S, Li H, Zhang Z, Guo Y, Chen C, Chen S, Yan J, Zhao W, Yun J. Mater. Lett., 2018, 230: 224.

[20]

Shang J, Li W, Zhu Y. J. Mol. Catal. A: Chem., 2003, 202(1/2): 187.

[21]

Im J S, Kim M I, Lee Y-S. Mater. Lett., 2008, 62(21/22): 3652.

[22]

Shah A P, Jain S, Mokale V J, Shimpi N G. Journal of Industrial and Engineering Chemistry, 2019, 77: 154.

[23]

Abdel-Mottaleb M M, Khalil A, Osman T A, Khattab A. J. Mech. Behav. Biomed. Mater., 2019, 98: 205.

[24]

Barhoum A, Pal K, Rahier H, Uludag H, Kim I S, Bechelany M. Applied Materials Today, 2019, 17: 1.

[25]

Li H, Zhu Y, Cao H, Yang X, Li C. Mater. Res. Bull., 2013, 48(2): 232.

[26]

Pascariu P, Airinei A, Olaru N, Olaru L, Nica V. Ceram. Int., 201, 42(6): 6775.

[27]

Tao R, Shao C, Li X, Li X, Liu S, Yang S, Zhao C, Liu Y. J. Colloid Interface Sci., 2018, 529: 404.

[28]

Guo X, Dong X, Wang J, Yu W, Liu G. Chem. Eng. J., 2014, 250: 148.

[29]

Wang X X, Zhou X J, Shao C L, Li X H, Liu Y C. Appl. Surf. Sci., 2018, 455: 952.

[30]

Liu D, Li G, Zhao C, Wang X, Sun M, Sun X, Yan M, Guo C. Journal of Materials Science: Materials in Electronics, 2018, 29(17): 15029.

[31]

Hai G, Huang J, Cao L, Jie Y, Li J, Wang X, Zhang G. J. Alloys Compd., 2017, 690: 239.

[32]

Tian Y Y, Cong S, Su W M, Chen H Y, Li Q W, Geng F X, Zhao Z G. Nano Lett., 2014, 14(4): 2150.

[33]

Lv Y, Zhu Y, Zhu Y. The Journal of Physical Chemistry C, 2013, 117(36): 18520.

[34]

Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N, Bai H, Wang C. Angew. Chem. Int. Ed. Engl., 2012, 51(10): 2395.

[35]

Li X, Yang S, Sun J, He P, Xu X, Ding G. Carbon, 2014, 78: 38.

[36]

Yang L F, Yang Y J, Liu T Y, Ma X L, Lee S W, Wang Y H. New J. Chem., 2018, 42(18): 15253.

[37]

Makula P, Pacia M, Macyk W. J. Phys. Chem. Lett., 2018, 9(23): 6814.

[38]

Xiao L, Li G, Chu X, Yan G. Materials Research Express, 2019, 6(11): 115904.

[39]

Liu J, Hui Q, Chang M-J, Cui W-N, Xi T, Wang L-D, Sun M, Yuan B, Ni F-R. Journal of Materials Science: Materials in Electronics, 2020, 31: 17688.

[40]

Fakharian-Qomi M J, Sadeghzadeh-Attar A. ChemistrySelect, 2020, 5(20): 6001.

[41]

Panthi G, Gyawali K R, Park M. Nanomaterials(Basel), 2020, 10(5): 929.

[42]

Panthi G, Kwon O H, Kuk Y-S, Gyawali K R, Park Y W, Park M. Catalysts, 2020, 10(3): 348.

[43]

Ren J, Zhu Y. RSC Advances, 2020, 10(10): 6114.

[44]

Chang M-J, Cui W-N, Liu J, Wang K, Du H-L, Qiu L, Fan S-M, Luo Z-M. Journal of Materials Science & Technology, 2020, 36: 97.

[45]

Chang M-J, Cui W-N, Wang H, Liu J, Li H-L, Du H-L, Peng L-G. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 127.

[46]

Wang X, Zhou X, Shao C, Li X, Liu Y. Applied Surface Science, 2018, 455: 952.

[47]

Zhao R, Li X, Sun B L, Li Y Z, Li Y M, Yang R, Wang C. Journal of Materials Chemistry A, 2017, 5(3): 1133.

[48]

Song W, Zhao B, Wang C, Ozaki Y, Lu X. Journal of Materials Chemistry B, 2019, 7(6): 850.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/