Organic Nanocrystals Based on a Solid-emission-tunable AIEgen for Cell Imaging

Liming Yang , Lixin Guo , Hao Yu , Guan Wang , Jiangman Sun , Pengfei Zhang , Xinggui Gu , Ben Zhong Tang

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 129 -136.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 129 -136. DOI: 10.1007/s40242-020-0346-1
Article

Organic Nanocrystals Based on a Solid-emission-tunable AIEgen for Cell Imaging

Author information +
History +
PDF

Abstract

The development of fluorescent nanocrystals based on organic small molecules is of great importance in bioimaging due to the merits of easy modification, high brightness and excellent photostability, however suffering from the emission-detrimental aggregation-caused quenching(ACQ) effect. Herein, we successfully designed and synthesized an AIE-active di(N, N-dimethylaniline)-dibenzofulvene(named as NFTPE), which exhibits the crystallization-induced emission enhancement(CIEE) effect. Interestingly, two types of yellow- and orange-emissive crystals for NFTPE were obtained, exhibiting aggregation microenvironment-dependent emission tuning in the solid state. Single-crystal analysis and density functional theory(DFT) calculations reveal that different aggregation microenvironments result in the distinct molecular conformation for various emission. Excitingly, the crystallization of NFTPE in an aqueous solution under the assistance of amphiphilic PEG polymer matrices could be monitored in situ by the fluorescence changes, facilitating the preparation of NFTPE nanocrystals(NFTPE-NCs) by adjusting the aggregation microenvironment. The obtained NFTPE-NCs exhibit the superior performance in cell imaging in respect to high brightness, photostability, and biocompatibility, thus demonstrating the potential in bioimaging applications.

Keywords

Aggregation-induced emission(AIE) / Crystallization-induced emission enhancement(CIEE) / Aggregation microenvironment / Nanocrystal / Cell imaging

Cite this article

Download citation ▾
Liming Yang, Lixin Guo, Hao Yu, Guan Wang, Jiangman Sun, Pengfei Zhang, Xinggui Gu, Ben Zhong Tang. Organic Nanocrystals Based on a Solid-emission-tunable AIEgen for Cell Imaging. Chemical Research in Chinese Universities, 2021, 37(1): 129-136 DOI:10.1007/s40242-020-0346-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hong Y. N., Lam J. W. Y., Tang B. Z., Chem. Commun., 2009, (29), 4332

[2]

Kwok R T K, Leung C W T, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2015, 44(13): 4228.

[3]

Feng G X, Kwok R T K, Tang B Z, Liu B. Appl. Phys. Rev., 2017, 4(2): 021307.

[4]

Zhao W J, Cheung T S, Jiang N, Huang W B, Lam J W Y, Zhang X P, He Z K, Tang B Z. Nat. Commun., 2019, 10: 1595.

[5]

Xu S D, Duan Y K, Liu B. Adv. Mater., 2020, 32(1): 1903530.

[6]

Zhou C C, Xu W H, Zhang P B, Jiang M J, Chen Y C, Kwok R T K, Lee M M S, Shan G G, Qi R L, Zhou X, Lam J W Y, Wang S, Tang B Z. Adv. Funct. Mater., 2019, 29(4): 1805986.

[7]

Kenry, Chen C J, Liu B. Nat. Commun., 2019, 10: 2111.

[8]

Gao M, Tang B Z. Coord. Chem. Rev., 2020, 402: 213076.

[9]

Shao A D, Xie Y S, Zhu S J, Guo Z Q, Zhu S Q, Guo J, Shi P, James T D, Tian H, Zhu W H. Angew. Chem. Int. Ed., 2015, 54(25): 7275.

[10]

Gu X G, Kwok R T K, Lam J W Y, Tang B Z. Biomaterials, 2017, 146: 115.

[11]

Alvarado S R, Guo Y J, Ruberu T P A, Tavasoli E, Vela J. Coord. Chem. Rev., 2014, 263: 182.

[12]

Pinaud F, Clarke S, Sittner A, Dahan M. Nat. Methods, 2010, 7(4): 275.

[13]

Bae S W, Tan W H, Hong J I. Chem. Commun., 2012, 48(17): 2270.

[14]

Shur J W, Yoon D H. Cryst. Res. Technol., 2004, 39(12): 1099.

[15]

Zhang Y, Zou Y X, Liu F, Xu Y T, Wang X W, Li Y J, Liang H, Chen L, Chen Z, Tan W H. Anal. Chem., 201, 88(21): 10611.

[16]

Liu B W, Liu J W. Langmuir, 2015, 31(1): 371.

[17]

Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G. Analyst, 2010, 135(8): 1839.

[18]

Fery-Forgues S. Nanoscale, 2013, 5(18): 8428.

[19]

Luo J. D., Xie L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z., Chem. Commun., 2001, (18), 1740

[20]

Qian J, Tang B Z. Chem, 2017, 3(1): 56.

[21]

Wang H, Zhao E G, Lam J W Y, Tang B Z. Materials Today, 2015, 18(7): 365.

[22]

Li Q Q, Li Z. Sci. China Chem., 2015, 58(12): 1800.

[23]

Mei J, Leung N L C, Kwok R T K, Lam J W, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

[24]

Gu X G, Zhang X Y, Ma H L, Jia S R, Zhang P F, Zhao Y J, Liu Q, Wang J G, Zheng X Y, Lam J W Y, Ding D, Tang B Z. Adv. Mater., 2018, 30(26): 1801065.

[25]

Yang S J, Yin P-A, Li L, Peng Q, Gu X G, Gao G, You J S, Tang B Z. Angew. Chem. Int. Ed., 2020, 59(25): 10136.

[26]

Zheng Z, Li D Y, Liu Z, Peng H Q, Sung H H Y, Kwok R T K, Williams I D, Lam J W Y, Qian J, Tang B Z. Adv. Mater., 2019, 31(44): 1904799.

[27]

Wang S W, Liu J, Goh C C, Ng L G, Liu B. Adv. Mater., 2019, 31(44): 1904447.

[28]

Ni X, Zhang X Y, Duan X C, Zheng H-L, Xue X-S, Ding D. Nano Lett., 2019, 19(1): 318.

[29]

Nicol A, Kwok R T K, Chen C C, Zhao W J, Chen M, Qu J N, Tang B Z. J. Am. Chem. Soc., 2017, 139(41): 14792.

[30]

Chen C, Ni X, Jia S R, Liang Y, Wu X L, Kong D L, Ding D. Adv. Mater., 2019, 31(52): 1904914.

[31]

Fateminia S M A, Wang Z M, Goh C C, Manghnani P N, Wu W B, Mao D, Ng L G, Zhao Z J, Tang B Z, Liu B. Adv. Mater., 201, 29(1): 1604100.

[32]

Chen C, Ou H L, Liu R H, Ding D. Adv. Mater., 2020, 32(3): 1806331.

[33]

Chen C, Ni X, Tian H-W, Liu Q, Guo D-S, Ding D. Angew. Chem. Int. Ed., 2020, 59(25): 10008.

[34]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Haseg-awa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J. A., Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochter-ski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009

[35]

Gu X G, Yao J J, Zhang G X, Yan Y L, Zhang C, Peng Q, Liao Q, Wu Y S, Xu Z Z, Zhao Y S, Fu H B, Zhang D Q. Adv. Funct. Mater., 2012, 22(23): 4862.

[36]

Kang M M, Kwok R T K, Wang J G, Zhang H, Lam J W Y, Li Y, Zhang P F, Zou H, Gu X G, Li F, Tang B Z. J. Mater. Chem. B, 2018, 6(23): 3894.

[37]

Zhang P F, Jiang T, Li Y Y, Zhao Z, Gong P, Cai L T, Kwok R T K, Lam J W Y, Gu X G, Tang B Z. Chem. Asian J., 2019, 14(6): 770.

[38]

Gu X G, Yao J J, Zhang G X, Zhang D Q. Small, 2012, 8(22): 3406.

[39]

Senn H M, Thiel W. Angew. Chem. Int. Ed., 2009, 48(7): 1198.

[40]

Wang H, Gu X G, Hu R R, Lam J W Y, Zhang D Q, Tang B Z. Chem. Sci., 201, 7(9): 5692.

[41]

Wang L, Xia Q, Liu R Y, Qu J Q. J. Mater. Chem. B, 2018, 6(15): 2340.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/