NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation

Wenke Wang , Sandra Elizabeth Saji , Siva Karutur , Hong Zheng , Guodong Meng , Yonghong Cheng , Zongyou Yin

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1000 -1005.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1000 -1005. DOI: 10.1007/s40242-020-0342-5
Review

NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation

Author information +
History +
PDF

Abstract

The introduction of plasmons is an important method to solve the insufficient utilization of the full spectrum of solar energy by semiconductor catalysts. However, semiconductor catalysts combined with traditional noble metal plasmons(Au, Ag) can only extend the absorption spectrum to partially visible light. In order to further improve the photoenergy absorption efficiency of catalysts, they need to be able to effectively utilize near-infrared light, which has become a new research direction. Recent studies have shown that traditional noble metal plasmons can absorb a part of NIR through special morphology, size control and material composite. At the same time, gratifying achievements have been made in the application of plasmonic semiconductors with broad spectrum absorption in catalysis. This article reviews the principles of generating and regulating plasmonic effects in different catalytic systems. The applications of plasmon absorption of near-infrared light in energy conversion and environmental remediation have also been presented.

Keywords

Near-infrared / Plasmon / Energy conversion / Environmental remediation

Cite this article

Download citation ▾
Wenke Wang, Sandra Elizabeth Saji, Siva Karutur, Hong Zheng, Guodong Meng, Yonghong Cheng, Zongyou Yin. NIR-plasmon-enhanced Systems for Energy Conversion and Environmental Remediation. Chemical Research in Chinese Universities, 2020, 36(6): 1000-1005 DOI:10.1007/s40242-020-0342-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lewis N S, Nocera D G. Proc. Natl. Acad. Sci. USA, 200, 103: 15729.

[2]

Xu Y, Zhang C, Zhang L, Zhang X, Yao H, Shi J. Energy & Environmental Science, 201, 9: 2410.

[3]

Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J, Yin Z. Chemical Society Reviews, 2019, 48: 5310.

[4]

Yang M Q, Gao M, Hong M, Ho G W. Adv. Mater., 2018, 30: e1802894.

[5]

Gao W, Tian B, Zhang W, Zhang X, Wu Y, Lu G. Applied Catalysis B: Environmental, 2019, 257: 117908.

[6]

Feng W, Han X, Wang R, Gao X, Hu P, Yue W, Chen Y, Shi J. Advanced Materials, 2019, 31: 1805919.

[7]

Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B, Zhang H. Small, 2014, 10: 3537.

[8]

Chen W, Li X, Wang F, Javaid S, Pang Y, Chen J, Yin Z, Wang S, Li Y, Jia G. Small, 2020, 16: 1902231.

[9]

Manzi A, Simon T, Sonnleitner C, Doblinger M, Wyrwich R, Stern O, Stolarczyk J K, Feldmann J. J. Am. Chem. Soc., 2015, 137: 14007.

[10]

Willets K A, van Duyne R P. Annu. Rev. Phys. Chem., 2007, 58: 267.

[11]

Yang J, Guo Y, Lu W, Jiang R, Wang J. Adv. Mater., 2018, 30: e1802227.

[12]

Xu L, Yin Z, Cao S W, Fan Z, Zhang X, Zhang H, Xue C. Chemistry—A European Journal, 2014, 20: 2742.

[13]

Liu Z, Lu Z, Bosman M, Li N, Frankcombe T J, Jia G, Tricoli A, Liu Y, Du Y, Yin Z. Small, 2018, 14: 1803233.

[14]

Li Y, Wang L, Low J, Wu D, Hu C, Jiang W, Ma J, Wang C, Long R, Song L. Chinese Chemical Letters, 2020, 31: 231.

[15]

Hong X, Yin Z, Fan Z, Tay Y Y, Chen J, Du Y, Xue C, Chen H, Zhang H. Small, 2013, 10: 479.

[16]

Kelly K L, Coronado E, Zhao L L, Schatz G C. Journal of Physical Chemistry B, 2003, 107: 668.

[17]

Jain P K, El-Sayed M A. Nano Lett., 2007, 7: 2854.

[18]

Huang X, El-Sayed I H, Qian W, El-Sayed M A. Journal of the American Chemical Society, 200, 128: 2115.

[19]

Lou Z, Gu Q, Xu L, Liao Y, Xue C. Chem. Asian J., 2015, 10: 1291.

[20]

Huang Q, Hu S, Zhuang J, Wang X. Chemistry—A European Journal, 2012, 18: 15283.

[21]

Kriegel I, Jiang C, Rodriguez-Fernandez J, Schaller R D, Talapin D V, da Como E, Feldmann J. J. Am. Chem. Soc., 2012, 134: 1583.

[22]

Kanehara M, Koike H, Yoshinaga T, Teranishi T. J. Am. Chem. Soc., 2009, 131: 17736.

[23]

Yan J, Wang T, Wu G, Dai W, Guan N, Li L, Gong J. Adv. Mater., 2015, 27: 1580.

[24]

Chen X, Li N, Kong Z, Ong W-J, Zhao X. Materials Horizons, 2018, 5: 9.

[25]

Jiang R, Li B, Fang C, Wang J. Adv. Mater., 2014, 26: 5274.

[26]

Zhang X, Zhu Y, Yang X, Wang S, Shen J, Lin B, Li C. Nanoscale, 2013, 5: 3359.

[27]

Han P, Tana T, Xiao Q, Sarina S, Waclawik E R, Gómez D E, Zhu H. Chem, 2019, 5: 2879.

[28]

Qiao P, Sun B, Li H, Pan K, Tian G, Wang L, Zhou W. Chem. Asian J., 2019, 14: 177.

[29]

Jia J, O’Brien P G, He L, Qiao Q, Fei T, Reyes L M, Burrow T E, Dong Y, Liao K, Varela M. Advanced Science, 201, 3: 1600189.

[30]

Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Angewandte Chemie International Edition, 2017, 56: 2064.

[31]

Xu Z, Quintanilla M, Vetrone F, Govorov A O, Chaker M, Ma D. Advanced Functional Materials, 2015, 25: 2950.

[32]

Ha E, Lee L Y S, Wang J, Li F, Wong K Y, Tsang S C E. Advanced Materials, 2014, 26: 3496.

[33]

Persson C. Journal of Applied Physics, 2010, 107: 053710.

[34]

Zheng Z, Tachikawa T, Majima T. J. Am. Chem. Soc., 2014, 136: 6870.

[35]

Zhang Y, Ding H, Liu Y, Pan S, Luo Y, Li G. Journal of Materials Chemistry, 2012, 22: 10779.

[36]

Xu H, Huang Y, Luo D, Yang X, Jin S, Guo Q, Zhao Y, Fang Y, Wei Y, Wu J. Separation and Purification Technology, 2019, 210: 281.

[37]

Lou Z, Zhang P, Li J, Yang X, Huang B, Li B. Advanced Functional Materials, 2019, 29: 1808696.

[38]

Li J, Ye Y, Ye L, Su F, Ma Z, Huang J, Xie H, Doronkin D E, Zimina A, Grunwaldt J-D. Journal of Materials Chemistry A, 2019, 7: 2821.

[39]

An C, Peng S, Sun Y. Adv. Mater., 2010, 22: 2570.

[40]

Ji H, Lyu L, Zhang L, An X, Hu C. Applied Catalysis B: Environmental, 201, 199: 230.

[41]

Chen J, Che H, Huang K, Liu C, Shi W. Applied Catalysis B: Environmental, 201, 192: 134.

[42]

Shi W, Lv H, Yuan S, Huang H, Liu Y, Kang Z. Separation and Purification Technology, 2017, 174: 75.

[43]

Tian Q, Yao W, Wu W, Liu J, Wu Z, Liu L, Dai Z, Jiang C. ACS Sustainable Chemistry & Engineering, 2017, 5: 10889.

[44]

Zhang J, Fu X, Hao H, Gan W. Journal of Alloys and Compounds, 2018, 757: 134.

[45]

Johansson M B, Niklasson G A, Österlund L. Journal of Materials Research, 2012, 27: 3130.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/