Hydrothermal Synthesis of NiCo-layered Double Hydroxide Nanosheets Decorated on Biomass Carbon Skeleton for High Performance Supercapacitor

Fan Yang , Jia Chu , Yaping Cheng , Jiafang Gong , Xiaoqin Wang , Shanxin Xiong

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 772 -777.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 772 -777. DOI: 10.1007/s40242-020-0333-6
Article

Hydrothermal Synthesis of NiCo-layered Double Hydroxide Nanosheets Decorated on Biomass Carbon Skeleton for High Performance Supercapacitor

Author information +
History +
PDF

Abstract

A facile hydrothermal strategy is adopted to synthesize the composite of NiCo-layered double hydroxide(NiCo-LDH) with biomass carbon as substrate for supercapacitor electrodes. The prepared NiCo@BC was characterized by means of X-ray diffraction(XRD), scanning electronic microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy, and electrochemical tests. The SEM images demonstrated that numerous NiCo-LDH nanosheets directly grew on the surface of biomass carbon uniformly. Electrochemical tests indicated that the NiCo@BC electrode exhibited good capacitive behavior with a specific capacitance of 606.4 F/g at the current density of 0.5 A/g. In addition, the composite electrode showed excellent cyclic stability of 87.1% even after 1000 cycles. These results manifest that NiCo@BC nanocomposite is a promising candidate for the electrode material for future supercapacitor practical applications.

Keywords

NiCo-layered double hydroxide / Biomass carbon / Hydrothermal / Supercapacitor

Cite this article

Download citation ▾
Fan Yang, Jia Chu, Yaping Cheng, Jiafang Gong, Xiaoqin Wang, Shanxin Xiong. Hydrothermal Synthesis of NiCo-layered Double Hydroxide Nanosheets Decorated on Biomass Carbon Skeleton for High Performance Supercapacitor. Chemical Research in Chinese Universities, 2021, 37(3): 772-777 DOI:10.1007/s40242-020-0333-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38: 2520.

[2]

Yan J, Wang Q, Wei T, Fan Z. Adv. Energy Mater., 2014, 4: 157.

[3]

Zhang Y, Wang F, Zhu H, Zhou L C, Zheng X L, Li X H. Appl. Surf. Sci., 2017, 7: 426.

[4]

Yang H, Tang Y, Huang X, Wang L, Zhang Q. J. Mater. Sci. Mater. Electron., 2017, 28: 18637.

[5]

Chang S, Pu J, Wang J, Du H, Zhou Q. ACS Appl. Mater. Interfaces, 201, 8: 25888.

[6]

Viswanathan A, Shetty A N. Electrochim. Acta, 2017, 257: 483.

[7]

Choi Y J, Kim H K, Lee S W. J. Mater. Chem. A, 2017, 5: 24540.

[8]

Wen L, Xiao W, Li J. ACS Appl. Mater. Interfaces, 2017, 9: 28604.

[9]

Liu S X, Zheng L X, Yu P P, Han S C, Fang X S. Adv. Funct. Mater., 201, 26: 3331.

[10]

Hu H, Zhao Z, Wan W. RSC Advances, 2017, 7: 10583.

[11]

Schuster J, He G, Mandlmeier B. Angewandte Chemie, 2012, 51: 3591.

[12]

Taer E, Awitdrus, Deraman M, Talib I A, Kanwal S. Asian Physics Symposium AIP Publis-hing LLC, 2015, 1656: 11.

[13]

Huang W, Zhang H, Huang Y. Carbon, 2011, 49: 838.

[14]

Šekularac G, Košević M, Dekanski A, Djokić V, Panjan M, Panić V. Chemelectrochem, 2017, 4: 2535.

[15]

Qiu Y, Yu J, Tan C, Zhou X, Yin J. Micro & Nano Letters, 2012, 7: 56.

[16]

Qiu Z, Huang T, Zhao C. Micro & Nano Letters, 2017, 12: 231.

[17]

Wang X W, Wu K L, Zhang Z X. Micro & Nano Letters, 2015, 10: 9.

[18]

Chu J, Lu D, Ma J. Materials Letters, 2017, 193: 263.

[19]

Chu J, Lu D, Wang X. J. Alloys Compd., 2017, 702: 568.

[20]

Jun Y, Qian W, Tong W. Adv. Energy Mater., 201, 6: 1601111.

[21]

Wang C, Wang J Y, Hu W P. Chem. Res. Chinese Universities, 2020, 36(1): 68.

[22]

Zhou Q, Jiao S Z, Zheng B. Chem. Res. Chinese Universities, 2019, 35(6): 957.

[23]

Shao X L, Liu F H, Xiao J X. Small, 2015, 34: 4267.

[24]

Luo Y, Yang T, Zhao Q. J. Alloys Compd., 2017, 729: 64.

[25]

Zheng L X, Han S C, Liu H, Yu P P, Fang X S. Small, 201, 26: 3331.

[26]

Wang X, Yang Y, Zhang Y, Li Q, Gong M, Zhang R. J. Porous Mater., 2018, 25: 855.

[27]

Zhang D, Yan H, Lu Y. Nanoscale Res. Lett., 2014, 9: 139.

[28]

Chien H C, Cheng W Y, Wang Y H, Lu S Y. Adv. Funct. Mater., 2012, 22: 5038.

[29]

Zhang G, Lou X W D. Sci. Rep., 2013, 3: 1470.

[30]

Wang H, Wang X. ACS Appl. Mater. Interfaces, 2013, 5: 6255.

[31]

Shen L, Che Q, Li H. Adv. Funct. Mater., 2013, 24: 2630.

[32]

Abouali S, Garakani M A, Xu Z L. Carbon, 201, 102: 262.

[33]

Cai F, Kang Y, Chen H. J. Mater. Chem. A, 2014, 2: 11509.

[34]

Lai F, Miao Y, Zuo L. Small, 201, 12: 3235.

[35]

Warsi M F, Shakir I, Shahid M. Electrochim. Acta, 2014, 135: 513.

[36]

Lan D, Chen Y, Pan C. ACS Appl. Mater. Interfaces, 2014, 6: 11839.

[37]

Chun X X, Farayi M, Hui L. RSC Adv., 2017, 7: 38945.

[38]

Cai X, Shen X, Ma L. Chem. Eng. J., 2015, 268: 251.

[39]

Qu W H, Xu Y Y, Lu A H. Bioresour. Technol., 2015, 189: 285.

[40]

Wang W, Zhang G. J. Crystal Growth, 2009, 311: 4275.

[41]

Xiong S. H., He Y., Zhang X. K., Biomass Conv. Bioref., 2019, doi: https://doi.org/10.1007/s13399-019-00525-y

[42]

Hou G L, Zhu G L, Dai X B, Yan L T. Chem. J. Chinese Universities, 2020, 41(1): 44.

[43]

Dhole I A, Navale S T, Navale Y H, Jadhav Y M. J. Mater. Sci., 2017, 28: 10819.

[44]

Chen C X, Zhao C Y, Li C H. Chem. Res. Chinese Universities, 2020, 36(4): 715.

[45]

Zhou Y L, Yu D, Peng J W, Chen X F. Mater. Express, 2020, 8: 1364.

[46]

Wang B, Liu Q, Qian Z, Zhang X. J. Power Sources, 2014, 246: 747.

[47]

Deng L J, Qin X W, Qiao W L, Gu Y Z. J. Colloid Interface Sci., 2020, 578: 96.

[48]

Qin Q, Ou D, Ye C. Electrochim. Acta, 2019, 305: 403.

[49]

Qi J Q, Ruan C Y, Hu R, Sui Y W. J Mater. Sci., 2020, 55: 16683.

[50]

Wang B, Williams G R, Chang Z, Jiang M. ACS Appl. Mater. Interfaces, 2014, 6: 16304.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/