Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst

Qing Cen , Wei Xiao , Yingqi Liu , Qi Wang , Ayman Nafady , Shengqian Ma

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1128 -1135.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1128 -1135. DOI: 10.1007/s40242-020-0320-y
Article

Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst

Author information +
History +
PDF

Abstract

Visible-light-active Fe-POMs was fabricated via precipitating Fe3+ with Keggin type polyoxometalates (H3PW12O40, H4SiW12O40 or H3PMo12O40) under solvothermal condition. The as-prepared Fe-POMs were denoted as FePW, FeSiW and FePMo, respectively. Among the three kinds of Fe-POMs, FePMo displayed the highest visible light absorption, the largest specific surface area, the most sensitive photocurrent response and the smallest charge transfer resistance, which were all beneficial for heterogeneous photocatalysis. The efficiency for Cr(VI) reduction was ca. 88% by FePMo after 50 min visible light irradiation. The estimated rate constant(0.042 min−1) was ca. 2.5 and 1.8 times that by FePW and FeSiW, respectively. FTIR spectra indicated that the Keggin structure of PMo12O40 3− was maintained in FePMo. Mechanism study indicated that the photogenerated electrons in LUMO and the holes in HOMO were thermodynamically feasible for Cr(VI) reduction and H2O oxidation, respectively. Using FePMo as an optimized photocatalyst, good stability was also observed after 5 cyclic runs in both photocatalytic performance and XRD structure.

Keywords

Cr(VI) reduction / Photocatalysis / Polyoxometalate / FePMo / Visible light

Cite this article

Download citation ▾
Qing Cen, Wei Xiao, Yingqi Liu, Qi Wang, Ayman Nafady, Shengqian Ma. Fabrication of Fe-POMs as Visible-light-active Heterogeneous Photocatalyst. Chemical Research in Chinese Universities, 2020, 36(6): 1128-1135 DOI:10.1007/s40242-020-0320-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carlos E B, Violeta L, Bryan B. J. Hazard. Mater., 2012, 223/224: 1.

[2]

Wang C, Du X, Li J, Guo X, Wang P, Zhang J. Appl. Catal. B: Environ., 201, 193: 198.

[3]

Zou Y, Wang X, Khan A, Wang P, Liu Y, Alsaedi A, Hayat T, Wang X. Environ. Sci. Technol., 201, 50: 7290.

[4]

Al-Shannag M, Al-Qodah Z, Bani-Melhem K, Qtaishat M R, Alkasrawi M. Chem. Eng. J., 2015, 260: 749.

[5]

Fu F, Wang Q. J. Environ. Manage., 2011, 92: 407.

[6]

Chen C, Ma W, Zhao J. Chem. Soc. Rev., 2010, 39: 4206.

[7]

An X, Tang Q, Lan H, Liu H, Qu J. Appl. Catal. B: Environ., 2019, 244: 407.

[8]

Zhang G, Yang W, Wu W, Wu X, Zhang L, Kuang X, Wang S, Lu C. J. Catal., 2019, 369: 54.

[9]

Zhao X, Zhang Y, Zhao Y, Tan H, Zhao Z, Shi H, Wang E, Li Y. Dalton Trans., 2019, 48: 6484.

[10]

Tang Q, An X, Lan H, Liu H, Qu J. Appl. Catal. B: Environ., 2020, 268: 118394.

[11]

Huang Y, Wang R. J. Mater. Chem. A, 2019, 7: 12105.

[12]

Liu W, Dong L, Li R, Chen Y, Sun S, Li S, Lan Y. ACS Appl. Mater. Interf., 2019, 11: 7030.

[13]

Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I, Shams E, Salavati H. Ultrason. Sonochem., 2008, 15: 438.

[14]

Koutsouroubi E D, Xylouri A K, Armatas G S. Chem. Commun., 2015, 51: 4481.

[15]

Wang Q, Liu E, Zhang C, Huang S, Cong Y, Zhang Y. J. Colloid. Interf Sci., 2018, 516: 304.

[16]

Shi H, Yan G, Zhang Y, Tan H, Zhou W, Ma Y, Li Y, Chen W, Wang E. ACS Appl. Mater. Interfaces, 2017, 9: 422.

[17]

Cen Q, Gao Q, Zhang C, Liu Y, Wang Q, Wang Q. J. Colloid Interf. Sci., 2020, 562: 12.

[18]

Gao Q, Lin D, Fan Y, He Q, Wang Q. Chem. Eng. J., 2019, 374: 10.

[19]

Fournier M, Feumi-Jantou C, Rabia C, Hervé G, Launay S. J. Mater. Chem., 1992, 2: 971.

[20]

Al-Garni T, Al-Jallal N, Aouissi A. J. Chem., 2017, 2017: 5641604.

[21]

Yin D, Zhang L, Zhao X, Chen H, Zhai Q. Chin. J. Catal., 2015, 36: 2203.

[22]

Silva M J, Liberto N A, De Andrade Leles L C, Pereira U A. J. Mol. Catal A: Chem., 201, 422: 69.

[23]

Spojakina A, Kraleva E, Jiratova K, Petrov L. Appl. Catal. A: Gen., 2005, 288: 10.

[24]

Grosvenor A P, Kobe B A, Biesinger M C, McIntyre N S. Surf. Interface Anal., 2004, 36: 1564.

[25]

Phillips D C, Sawhill S J, Self R, Bussell M E. J. Catal., 2002, 207: 266.

[26]

Wang Q, Shi X, Xu J, Crittenden J C, Liu E, Zhang Y, Cong Y. J. Hazard. Mater., 201, 307: 213.

[27]

Cong Y, Ji Y, Ge Y, Jin H, Zhang Y, Wang Q. Chem. Eng. J., 2017, 307: 72.

[28]

Wang Q, Zhu N, Liu E, Fu L, Zhou T, Cong Y. Electrochim. Acta, 201, 216: 266.

[29]

Tian H, Araya T, Li R, Fang Y, Huang Y. Appl. Catal. B: Environ., 2019, 254: 371.

[30]

Dong G, Zhang Y, Pan Q, Qiu J. J. Photoch. Photobio. C, 2014, 20: 33.

[31]

Wu Q, Zhao J, Qin G, Wang C, Tong X, Song X. Appl. Catal. B: Environ., 2013, 142: 142.

[32]

Zhao Z, Zhang W, Sun Y, Yu J, Zhang Y, Wang H, Dong F, Wu Z. J. Phys. Chem. C, 201, 120: 11889.

[33]

Liu B, Liu X, Liu J, Feng C, Li Z, Li C, Gong Y, Pan L, Xu S, Sun C Q. Appl. Catal. B: Environ., 2018, 226: 234.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/