PDF
Abstract
TiO2 heterojunction with different TiO2 phases has been widely adopted for enhanced photocatalysis. Therein, a less common anatase/bronze TiO2 heterojunction, also named as anatase/TiO2(B) heterojunction, has recently drawn increasing interest. In this review, the structural advantages of anatase/bronze TiO2 heterojunction for enhanced photocatalysis is highlighted in terms of less lattice mismatch and better charge separation at the interface. Besides photocatalysis, the anatase/bronze TiO2 heterojunction is proven a promising candidate for heat-assisted photocatalysis, named as photothermal catalysis. Further, the anatase/bronze TiO2 heterojunction can serve as a good model to evaluate the strategy for improved photocatalysis and even photothermal catalysis. Herein, the recent attempts on boosting the photocatalytic and photothermal catalytic performance of anatase/bronze TiO2 heterojunction are summarized. It is expected that this review would arouse renewed interest for revisiting TiO2 heterojunction in photocatalysis, photothermal catalysis and other advanced photocatalysis.
Keywords
Anatase
/
Bronze
/
Photocatalysis
/
Photothermal catalysis
Cite this article
Download citation ▾
Changhua Wang, Xintong Zhang.
Anatase/Bronze TiO2 Heterojunction: Enhanced Photocatalysis and Prospect in Photothermal Catalysis.
Chemical Research in Chinese Universities, 2020, 36(6): 992-999 DOI:10.1007/s40242-020-0312-y
| [1] |
Fujishima A, Honda K. Nature, 1972, 238: 37.
|
| [2] |
Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
|
| [3] |
Chen X, Liu L, Peter Y Y, Mao S S. Science, 2011, 331: 746.
|
| [4] |
Yang H, Sun C, Qiao S, Zou J, Liu G, Smith S C, Cheng H, Lu G. Nature, 2008, 453: 638.
|
| [5] |
De Angelis F, Di Valentin C, Fantacci S, Vittadini A, Selloni A. Chem. Rev., 2014, 114: 9708.
|
| [6] |
Wang C, Zhang X, Zhang Y, Jia Y, Yang J, Sun P, Liu Y. J. Phys. Chem. C, 2011, 115: 22276.
|
| [7] |
Lin C H, Chao J H, Liu C H, Chang J C, Wang F C. Langmuir, 2008, 24: 9907.
|
| [8] |
Zhou W, Gai L, Hu P, Cui J, Liu X, Wang D, Li G, Jiang H, Liu D, Liu H, Wang J. CrystEngComm, 2011, 13: 6643.
|
| [9] |
Wang C, Zhang X, Wei Y, Kong L, Chang F, Zheng H, Wu L, Zhi J, Liu Y. Dalton Trans., 2015, 44: 13331.
|
| [10] |
Wang C, Zhang X, Liu Y. Nanoscale, 2014, 6: 5329.
|
| [11] |
Li W, Liu C, Zhou Y, Bai Y, Feng X, Yang Z, Lu L, Lu X, Chan K W. J. Phys. Chem. C, 2008, 112: 20539.
|
| [12] |
Billet J, Dujardin W, De Keukeleere K, De Buysser K, De Roo J, Van Driessche I. Chem. Mater., 2018, 30: 4298.
|
| [13] |
Andreev Y G, Panchmatia P M, Liu Z, Parker S C, Islam M S, Bruce P G. J. Am. Chem. Soc., 2014, 136: 6306.
|
| [14] |
Li Y, Huang J, Peng T, Xu J, Zhao X. ChemCatChem, 2010, 2: 1082.
|
| [15] |
Chen G, Gao R, Zhao Y, Li Z, Waterhouse G I N, Shi R, Zhao J, Zhang M, Shang L, Sheng G, Zhang X, Wen X, Wu L, Tung C, Zhang T. Adv. Mater., 2018, 30: 1704663.
|
| [16] |
Li Z, Liu J, Zhao Y, Waterhouse GIN, Chen G, Shi R, Zhang X, Liu X, Wei Y, Wen X, Wu L, Tung C, Zhang T. Adv. Mater., 2018, 30: 1800527.
|
| [17] |
Li Y, Wang C, Zheng H, Wan F, Yu F, Zhang X, Liu Y. Appl. Surf Sci., 2017, 391: 654.
|
| [18] |
Li Y, Wang C, Song M, Li D, Zhang X, Liu Y. Appl. Catal. B, 2019, 243: 760.
|
| [19] |
Yu F, Wang C, Li Y, Ma H, Wang R, Liu Y, Suzuki N, Terashima C, Ohtani B, Ochiai T, Fujishima A, Zhang X. Adv. Sci., 2020, 7: 2000204.
|
| [20] |
Armstrong A R, Armstrong G, Canales J, Garcia R, Bruce P G. Adv. Mater., 2005, 17: 862.
|
| [21] |
Chen B, Meng Y, Xie F, He F, He C, Davey K, Zhao N, Qiao S. Adv. Mater., 2018, 30: 1804116.
|
| [22] |
Wang Z, Wang Y, Zhang W, Wang Z, Ma Y, Zhou X. J. Phys. Chem. C, 2019, 123: 1779.
|
| [23] |
Voepel P, Weiss M, Smarsly B M, Marschall R. J. Photochem. Photobiol., 2018, 366: 34.
|
| [24] |
Yang D, Liu H, Zheng Z, Yuan Y, Zhao J, Waclawik E R, Ke X, Zhu H. J. Am. Chem. Soc., 2009, 131: 17885.
|
| [25] |
Lei Y, Lin X, Wu D, Wang Z, Zhong P, Ma X, Sun J. Adv. Mater. Interfaces, 2020, 7: 1901819.
|
| [26] |
Liu Q, Nie Y, Zhan H, Zhu H, Sun Z, Bell J, Bo A, Gu Y. J. Phys. Chem. C, 2020, 124: 11174.
|
| [27] |
Liu Q, Zhan H, Zhu H, Liu H, Sun Z, Bell J, Bo A, Gu Y. Nano Lett., 2019, 19: 7742.
|
| [28] |
Nitta A, Takashima M, Murakami N, Takase M, Ohtani B. Electrochim. Acta, 2018, 264: 83.
|
| [29] |
Nagakawa H, Ochiai T, Ma H, Wang C, Zhang X, Shen Y, Takashima M, Ohtani B, Nagata M. RSC Adv., 2020, 10: 18496.
|
| [30] |
Wang Y, Wang C, Zhang X, Sun P, Kong L, Wei Y, Zheng H, Liu Y. Appl. Surf. Sci., 2014, 292: 937.
|
| [31] |
Yu F, Wang C, Ma H, Song M, Li D, Li Y, Li S, Zhang X, Liu Y. Nanoscale, 2020, 12: 7000.
|
| [32] |
Wang C, Zhang X, Zhang Y, Jia Y, Yuan B, Yang J, Sun P, Liu Y. Nanoscale, 2012, 4: 5023.
|
| [33] |
Lo H H, Gopal N O, Sheu S C, Ke S C. J. Phys. Chem. C, 2014, 118: 2877.
|
| [34] |
Liu B, Khare A, Aydil E S. ACS Appl. Mater. Interfaces, 2011, 3: 4444.
|
| [35] |
Sun P, Wei Y, Wang C, Zhang X. New J. Chem., 2015, 39: 1281.
|
| [36] |
Cai J, Wang Y, Zhu Y, Wu M, Zhang H, Li X, Jiang Z, Meng M. ACS Appl. Mater. Interfaces, 2015, 7: 24987.
|
| [37] |
Zhao J, Yang Q, Shi R, Waterhouse G I N, Zhang X, Wu L Z, Tung C H, Zhang T. NPG Asia Mater., 2020, 12: 5.
|
| [38] |
Feng K, Wang S, Zhang D, Wang L, Yu Y, Feng K, Li Z, Zhu Z, Li C, Cai M, Wu Z, Kong N, Yan B, Zhong J, Zhang X, Ozin G A, He L. Adv. Mater., 2020, 32: 2000014.
|
| [39] |
Zhang D, Lv K, Li C, Fang Y, Wang S, Chen Z, Wu Z, Guan W, Lou D, Sun W, Yang D, He L, Zhang X. Solar RRL, 2020.
|
| [40] |
Li Y, Wu S, Wu J, Hu Q, Zhou C. J. Mater. Chem., 2020, 8: 8171.
|
| [41] |
Lou Z, Yuan D, Zhang F, Wang Y, Li Y, Zhu L. Nano Energy, 2019, 62: 653.
|
| [42] |
Meng X, Wang T, Liu L, Ouyang S, Li P, Hu H, Kako T, Iwai H, Tanaka A, Ye J. Angew. Chem. Int. Ed., 2014, 53: 11478.
|