Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries
Xinzhe Yang , Tingting Qin , Xiaoyu Zhang , Xiaofei Liu , Zizhun Wang , Wei Zhang , Weitao Zheng
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 259 -264.
Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries
Low-cost lithium sulfur(Li-S) batteries afford preeminent prospect as a next-generation high-energy storage device by virtue of great theoretical capacity. Nevertheless, their applications are restricted by some challenging technical barriers, such as weak cycling stability and low poor-conductivity sulfur loading originated in notorious shuttling effect of polysulfide intermediates. Herein, free of any complicated compositing process, we design an interlayer of carbon fiber paper supported TiO2/TiO to impede the shuttle effect and enhance the electrical conductivity via physical isolation and chemical adsorption. Such a self-crystallized homogeneous interlayer, where TiO2/TiO enables absorbing lithium polysulfides(LiPSs) and TiO plays a key role of high-electron-conductivity exhibited ultrahigh capacities(1000 mA·h/g at 0.5 C and 900 mA·h/g at 1 C) and outstanding capacity retention rate(97%) after 100 cycles. Thus, our design provides a simple route to suppress the shuttle effect via self-derived evolution Li-S batteries.
Lithium sulfur battery / TiO2/TiO / Carbon fiber paper
| [1] |
|
| [2] |
|
| [3] |
Zhang W., Wang D., Zheng W., Journal of Energy Chemistry, 2020, 41100 |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
/
| 〈 |
|
〉 |