Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries

Xinzhe Yang , Tingting Qin , Xiaoyu Zhang , Xiaofei Liu , Zizhun Wang , Wei Zhang , Weitao Zheng

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 259 -264.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (2) : 259 -264. DOI: 10.1007/s40242-020-0310-0
Article

Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries

Author information +
History +
PDF

Abstract

Low-cost lithium sulfur(Li-S) batteries afford preeminent prospect as a next-generation high-energy storage device by virtue of great theoretical capacity. Nevertheless, their applications are restricted by some challenging technical barriers, such as weak cycling stability and low poor-conductivity sulfur loading originated in notorious shuttling effect of polysulfide intermediates. Herein, free of any complicated compositing process, we design an interlayer of carbon fiber paper supported TiO2/TiO to impede the shuttle effect and enhance the electrical conductivity via physical isolation and chemical adsorption. Such a self-crystallized homogeneous interlayer, where TiO2/TiO enables absorbing lithium polysulfides(LiPSs) and TiO plays a key role of high-electron-conductivity exhibited ultrahigh capacities(1000 mA·h/g at 0.5 C and 900 mA·h/g at 1 C) and outstanding capacity retention rate(97%) after 100 cycles. Thus, our design provides a simple route to suppress the shuttle effect via self-derived evolution Li-S batteries.

Keywords

Lithium sulfur battery / TiO2/TiO / Carbon fiber paper

Cite this article

Download citation ▾
Xinzhe Yang, Tingting Qin, Xiaoyu Zhang, Xiaofei Liu, Zizhun Wang, Wei Zhang, Weitao Zheng. Self-crystallized Interlayer Integrating Polysulfide-adsorbed TiO2/TiO and Highly-electron-conductive TiO for High-stability Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2021, 37(2): 259-264 DOI:10.1007/s40242-020-0310-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy & Environmental Science, 2011, 4: 3243.

[2]

Tang Y, Zhang Y, Li W, Ma B, Chen X. Chemical Society Reviews, 2015, 44: 5926.

[3]

Zhang W., Wang D., Zheng W., Journal of Energy Chemistry, 2020, 41100

[4]

Seh Z W, Sun Y, Zhang Q, Cui Y. Chemical Society Reviews, 201, 45: 5605.

[5]

Pope M A, Aksay I A. Advanced Energy Materials, 2015, 5: 1500124.

[6]

Peng H, Huang J, Cheng X, Zhang Q. Advanced Energy Materials, 2017, 7: 1700260.

[7]

Cheng Z, Pan H, Zhong H, Xiao Z, Li X, Wang R. Advanced Functional Materials, 2018, 28: 1707597.

[8]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nature Materials, 2011, 11: 19.

[9]

Ren W, Ma W, Zhang S, Tang B. Energy Storage Materials, 2019, 23: 707.

[10]

Zhang X, Jin B, Li L, Cheng T, Wang H, Xin P, Lang X, Yang C, Gao W, Zhu Y, Jiang Q. Journal of Electroanalytical Chemistry, 201, 780: 26.

[11]

Chung S-H, Manthiram A. Advanced Materials, 2014, 26: 7352.

[12]

Liu X, Wang D, Yang X, Zhao Z, Yang H, Feng M, Zhang W, Zheng W. ACS Applied Energy Materials, 2019, 2: 1428.

[13]

Jiang H, Liu X-C, Wu Y, Shu Y, Gong X, Ke F-S, Deng H. Angewandte Chemie-International Edition, 2018, 57: 3916.

[14]

Su Y, Manthiram A. Nature Communications, 2012, 3: 1166.

[15]

Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Advanced Materials, 2011, 23: 5641.

[16]

Zhao M, Liu X, Zhang Q, Tian G, Huang J, Zhu W, Wei F. ACS Nano, 2012, 6: 10759.

[17]

Tian Y, Huang H, Liu G, Bi R, Zhang L. Chemical Communications, 2019, 55: 3243.

[18]

Xi K, He D, Harris C, Wang Y, Lai C, Li H, Coxon P R, Ding S, Wang C, Kumar R V. Advanced Science, 2019, 6: 1800815.

[19]

Zhong Y, Yin L, He P, Liu W, Wu Z, Wang H. Journal of the American Chemical Society, 2018, 140: 1455.

[20]

Li X, Gao B, Huang X, Guo Z, Li Q, Zhang X, Chu P K, Huo K. ACS Applied Materials & Interfaces, 2019, 11: 2961.

[21]

Lv L, Guo C, Sun W, Wang Y. Small, 2018, 15: 1804338.

[22]

Sun W, Sun X, Peng Q, Wang H, Ge Y, Akhtar N, Huang Y, Wang K. Nanoscale Advances, 2019, 1: 1589.

[23]

Zhang H, Zhao Z, Hou Y, Tang Y, Liang J, Liu X, Zhang Z, Wang X, Qiu J. Journal of Materials Chemistry, 2019, 7: 9230.

[24]

Gao X, Yang X, Li M, Sun Q, Liang J, Luo J, Wang J, Li W, Liang J, Liu Y. Advanced Functional Materials, 2019, 29: 1806724.

[25]

Zhou T, Lv W, Li J, Zhou G, Zhao Y, Fan S, Liu B, Li B, Kang F, Yang Q. Energy and Environmental Science, 2017, 10: 1694.

[26]

Li Z, Zhang J, Guan B, Wang D, Liu L M, Lou X W. Nature Communications, 201, 7: 13065.

[27]

Chen X, Glans P A, Qiu X, Dayal S, Jennings W D, Smith K E, Burda C, Guo J. Journal of Electron Spectroscopy and Related Phenomena, 2008, 162: 67.

[28]

Fang R, Zhao S, Sun Z, Wang D, Cheng H, Li F. Advanced Materials, 2017, 29: 1606823.

[29]

Zhang S S. Electrochimica Acta, 2012, 70: 344.

[30]

Xu R, Lu J, Amine K. Advanced Energy Materials, 2015, 5: 1500408.

[31]

Pu J, Shen Z, Zheng J, Wu W, Zhu C, Zhou Q, Zhang H, Pan F. Nano Energy, 2017, 37: 7.

[32]

Gulzar U, Li T, Bai X, Colombo M, Ansaldo A, Marras S, Prato M, Goriparti S, Capiglia C, Zaccaria R P. ACS Applied Materials & Interfaces, 2018, 10: 5551.

[33]

Barchasz C, Lepretre J, Alloin F, Patoux S. Journal of Power Sources, 2012, 199: 322.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/