Spherical Cu2O Assembled by Small Nanoparticles and Its High Efficiency in Photodegradations of Methylene Blue Under Different Light Sources

Peiwen Chen , Lianjie Zhu , Zhuangzhuang Chang , Hongjia Gao , Deyou Chen , Mo Qiu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1108 -1115.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1108 -1115. DOI: 10.1007/s40242-020-0309-6
Article

Spherical Cu2O Assembled by Small Nanoparticles and Its High Efficiency in Photodegradations of Methylene Blue Under Different Light Sources

Author information +
History +
PDF

Abstract

Well-dispersed mesoporous spherical Cu2O assembled by small nanoparticles was synthesized by a green and rapid solution route at room temperature under assistance of ultrasonic, using eco-friendly ascorbic acid(AA) as the main reducing agent and glucose as a weak reducing agent and soft template. The Cu2O spheres were characterized by XRD, SEM, HRTEM, XPS and N2 adsorption-desorption isotherm. Its optical property was studied by UV-Vis diffuse reflectance absorption spectrum and the photocatalytic activities were evaluted by photodegradations of methylene blue(MB) under different light sources. The results show that each spherical Cu2O(ca. 200 nm in diameter) was accumulated by numerous small nanoparticles of 8―10 nm and mesopores exist between the nanoparticles, which result in a high BET surface area. The spherical Cu2O exhibits good light-harvesting ability in both UV and visible light region and excellent photodegradation activities to high concentrations of MB solutions under both UV-visible light and visible light.

Keywords

Spherical Cu2O / Photodegradation / Methylene blue / Visible light

Cite this article

Download citation ▾
Peiwen Chen, Lianjie Zhu, Zhuangzhuang Chang, Hongjia Gao, Deyou Chen, Mo Qiu. Spherical Cu2O Assembled by Small Nanoparticles and Its High Efficiency in Photodegradations of Methylene Blue Under Different Light Sources. Chemical Research in Chinese Universities, 2020, 36(6): 1108-1115 DOI:10.1007/s40242-020-0309-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yadav S, Chauhan M, Mathur D, Jain A, Malhotra P. Environ. Dev. Sustain, 2020.

[2]

Pan J H, Wang X Z, Huang Q Z, Shen C, Koh Z Y, Wang Q, Engel A. Adv. Funct. Mater., 2014, 24(1): 95.

[3]

Tahir M B, Kiran H, Iqbal T. Environ. Sci. Pollut. Res. Int., 2019, 26(11): 10515.

[4]

Wu Y, Wang H, Tua W G, Liu Y, Tana Y Z, Yuan X Z, Chew J W. J. Hazard. Mater., 2018, 347: 412.

[5]

Wang J L, Xu L J. Crit. Rev. Environ. Sci. Technol., 2012, 42(3): 251.

[6]

Widchaya R, Araya T, Ratchaneekorn W. Chem. Res. Chinese Universities, 2014, 30(1): 149.

[7]

Le Pivert M, Zerelli B, Martin N, Capochichi-Gnambodoe M, Leprince-Wang Y. Constr. Build. Mater., 2020, 257: 119592.

[8]

Shi S, Teng F, Hao W Y, Gu W H, Yang Z C, Zhao F D. Inorg. Chem., 2019, 58(14): 9161.

[9]

Pei Z Z, Liu Y B, Jia H, Zhou J X, Li F, Wang X, He X H. J. Nanosci. Nanotechnol., 2020, 20(5): 3013.

[10]

Wang S, Xu H, Qian L Q, Jia X, Wang J W, Liu Y Y, Tang W H. J. Solid State Chem., 2009, 182(5): 1088.

[11]

Du S, Cheng P F, Sun P, Wang B, Cai Y X, Liu F M, Zheng J, Lu G. Chem. Res. Chinese Universities, 2014, 30(4): 661.

[12]

Ng C H, Fan W Y. J. Phys. Chem. B, 200, 110(42): 20801.

[13]

Briskman R N. Sol. Energy Mater. Sol. Cells, 1992, 27(4): 361.

[14]

De Jongh P E, Vanmaekelbergh D, Kelly J J. Chem. Commun., 1999, 12: 1069.

[15]

Xu H, Wang W, Zhu W. J. Phys. Chem. B, 200, 110(28): 13829.

[16]

White B, Yin M, Hall A, Le D, Stolbov S, Rahman T, Turro N O, Brien S. Nano Lett., 200, 6(9): 2095.

[17]

Kim M H, Lim B, Lee E P, Xia Y N. J. Mater. Chem., 2008, 18(34): 4069.

[18]

Dong C, Zhong M Y, Huang T, Ma M X, Wortmann D, Brajdic M, Kelbassa I. ACS Appl. Mater. Interfaces, 2011, 3(11): 4332.

[19]

Yu Y, Zhang L Y, Wang J, Yang Z, Long M C, Hu N T, Zhang Y F. Nanoscale Res. Lett., 2012, 7(1): 347.

[20]

Deng X, Zhang Q, Zhao Q Q, Ma L S, Ding M, Xu X J. Nanoscale Res. Lett., 2015, 10: 8.

[21]

Teo J J, Chang Y, Zeng H C. Langmuir, 200, 22(17): 7369.

[22]

Leng M, Liu M Z, Zhang Y B, Wang Z Q, Yu C, Yang X G, Zhang H G, Wang C. J. Am. Chem. Soc., 2010, 132(48): 17084.

[23]

Yu H, Yu J G, Liu S W, Mann S. Chem. Mater., 2007, 19(17): 4327.

[24]

Zhang Y, Deng B, Zhang T R, Gao D M, Xu A W. J. Phys. Chem. C, 2010, 114(11): 5073.

[25]

Ismail N A, Shamelia K, Wong M M T, Teow S Y, Chew J. Mater. Sci. Eng. C, 2019, 104: 109899.

[26]

Patra J K, Baek K H. J. Nanomater., 2014, 2014: 1.

[27]

Kumar M, Das R R, Samal M K-, Sik Y. Mater. Chem. Phys., 2018, 218: 272.

[28]

Kumar S, Ojhab A K, Bhoroluac D, Dasa J, Kumarc A, Hazarika A. Phys. B, 2019, 558: 74.

[29]

Boughelout A, Macaluso R, Kechouane M, Trari M. React. Kinet., Mech. Catal., 2020, 129(2): 1115.

[30]

Wang W, Zhu L J, Lv P Z, Li J F, Zhao X W. Mater. Res. Bull., 2019, 110: 190.

[31]

Abulizi A, Yang G H, Zhu J J. Ultrason. Sonochem., 2014, 21(1): 129.

[32]

Nandi P, Das D. J. Phys. Chem. Solids, 2020, 143: 109463.

[33]

Zhao L, Chen H, Wang Y L, Che H W, Gunawan P, Zhong Z Y, Li H, Su F B. Chem. Mater., 2012, 24(6): 1136.

[34]

Yu X Y, Xu R X, Gao C, Luo T, Jia Y, Liu J H, Huang X J. ACS Appl. Mater. Interfaces, 2012, 4(4): 1954.

[35]

Chang T H, Hsu C H, Lin H C, Chang K H, Li Y Y. J. Alloys Compd., 2015, 644: 324.

[36]

Hooch A W, Choi Y J, Seong K D, Piao Y Z. Sens. Actuators, B, 2018, 255: 1995.

[37]

Zhang Q, Huang L H, Kang S F, Yin C C, Ma Z, Cui L F, Wang Y G. RSC Adv., 2017, 7(69): 43642.

[38]

Jiao Y, Li N, Yu H, Li W T, Zhao J X, Li X, Zhang X K. RSC Adv., 2017, 7(2): 662.

[39]

Ba N, Zhu L J, Zhang G Z, Li J F, Li H J. Sens. Actuators, B, 201, 227: 142.

[40]

Zhao Y, Zhu L J, Jiang Y, Xie H J, Zhang G Z, Ba N N. Mater. Lett., 2015, 147: 82.

[41]

Ouyang J, Yang H M, Tang A D. Mater. Des., 201, 92: 261.

[42]

Yu W B, Liu J, Yi M, Yang J X, Dong W D, Wang C, Zhao H, Mohamed H S H, Wang Z, Chen L H, Li Y, Su B L. J. Colloid Interface Sci., 2020, 565: 207.

[43]

Kakuma Y, Nosaka A Y, Nosaka Y. Phys. Chem. Chem. Phys., 2015, 17(28): 18691.

[44]

Kusior A, Michalec K, Jelen P, Radecka M. Appl. Surf. Sci., 2019, 476: 342.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/