Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility

Ting Chen , Lei Zhong , Zhen Yang , Zhigang Mou , Lei Liu , Yan Wang , Jianhua Sun , Weiwei Lei

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1083 -1090.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1083 -1090. DOI: 10.1007/s40242-020-0301-1
Article

Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility

Author information +
History +
PDF

Abstract

Limited visible-light absorption and high recombination rate of photogenerated charges are two main drawbacks in g-C3N4-based photocatalysts. To solve these problems, g-C3N4/nitrogen-doped graphene quantum dots (NGQDs)/TiO2 ternary heterojunctions were facilely prepared via a one-step calcining method. The morphology, structure, optical and electrochemical properties of g-C3N4/NGQDs/TiO2 were characterized and explored. The optimal g-C3N4/NGQDs/TiO2 composite exhibits enhanced photocatalytic degradation performance of ciprofloxacin (CIP) compared with the as-prepared g-C3N4, TiO2(P25) and g-C3N4/TiO2 heterojunction under visible light irradiation. The apparent rate constant of the composite is around 6.43, 4.03 and 2.30 times higher than those of g-C3N4, TiO2 and g-C3N4/TiO2, respectively. The enhanced photocatalytic efficiency should be mainly attributed to the improvement of light absorption and charge separation and transfer efficiency, originating from the narrow band gap and high charge carrier mobility. The active species trapping experiments results showed that the h+ and ·O2 were the main active species in the degradation process. A possible photocatalytic reaction mechanism of the g-C3N4/NGQDs/TiO2 composite for the enhanced degradation of CIP under visible light irradiation was also proposed.

Keywords

g-C3N4/NGQDs/TiO2 / Heterojunction / Photocatalysis / Antibiotic ciprofloxacin

Cite this article

Download citation ▾
Ting Chen, Lei Zhong, Zhen Yang, Zhigang Mou, Lei Liu, Yan Wang, Jianhua Sun, Weiwei Lei. Enhanced Visible-light Photocatalytic Activity of g-C3N4/Nitrogen-doped Graphene Quantum Dots/TiO2 Ternary Heterojunctions for Ciprofloxacin Degradation with Narrow Band Gap and High Charge Carrier Mobility. Chemical Research in Chinese Universities, 2020, 36(6): 1083-1090 DOI:10.1007/s40242-020-0301-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Välitalo P, Kruglova A, Mikola A, Vahala R. Int. J. Hyg. Environ. Health, 2017, 220: 558.

[2]

Lin J-S, Pan H-Y, Liu S-M, Lai H-T. J. Environ. Sci. Heal. B, 2010, 45: 456.

[3]

Li D, Shi W. Chinese J. Catal., 201, 37: 792.

[4]

Liao G, Gong Y, Zhang L, Gao H, Yang G-J, Fang B. Energ. Environ. Sci., 2019, 12: 2080.

[5]

Reddy K R, Reddy C H V, Nadagouda M N, Shetti N P, Jaesool S, Aminabhavi T M. J. Environ. Manage., 2019, 238: 25.

[6]

Zada A, Qu Y, Ali S, Sun N, Lu H, Yan R, Zhang X, Jing L. J. Hazard. Mater., 2018, 342: 715.

[7]

Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Chem. Rev., 2014, 114: 9919.

[8]

Xu Y, Luo Y, Qian Q, Huang B, Chen Q. Opt. Mater., 2017, 72: 691.

[9]

Chen P, Wang F, Zhang Q, Su Y, Shen L, Yao K, Chen Z-F, Liu Y, Cai Z, Lv W, Liu G. Chemosphere, 2017, 172: 193.

[10]

Wang H, Li J, Ma C, Guan Q, Lu Z, Huo P, Yan Y. Appl. Surf. Sci., 2015, 329: 17.

[11]

Yang Z, Yan J, Lian J, Xu H, She X, Li H. ChemistrySelect, 201, 1: 5679.

[12]

Sheng Y, Wei Z, Miao H, Yao W, Li H, Zhu Y. Chem. Eng. J., 2019, 370: 287.

[13]

Acharya R, Parida K. J. Environ. Chem. Eng., 2020, 8: 103896.

[14]

Zhang Z, Zhang J, Chen N, Qu L. Energ. Environ. Sci., 2012, 5: 8869.

[15]

Wang Z, Zeng H, Sun L. J. Mater. Chem. C, 2015, 3: 1157.

[16]

Liu J, Xu H, Xu Y, Song Y, Lian J, Zhao Y, Wang L, Huang L, Ji H, Li H. Appl. Catal. B: Environ., 2017, 207: 429.

[17]

Xu T, Wang D, Dong L, Shen H, Lu W, Chen W. Appl. Catal. B: Environ., 2019, 244: 96.

[18]

Yan M., Zhu F., Gu W., Sun L., Shi W., Hua Y., RSC Adv., 2016, 6

[19]

Tang L, Ji R, Li X, Teng K S, Lau S P. J. Mater. Chem. C, 2013, 7: 4908.

[20]

Mou Z, Lu C, Yu K, Wu H, Zhang H, Sun J, Zhu M, Goh M C. Energy Technol., 2019, 7: 1800589.

[21]

Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z. Nanoscale, 2013, 5: 12272.

[22]

Guo F, Chen J, Zhao J, Chen Z, Xia D, Zhan Z, Wang Q. Chem. Eng. J., 2020, 386: 124014.

[23]

Zhang L, Xi Z, Xing M, Zhang J. Int. J. Hydrogen Energ., 2013, 38: 9169.

[24]

Yu J, Wang S, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 75: 16883.

[25]

Pan J, You M, Chi C, Dong Z, Wang B, Zhu M, Zhao W, Song C, Zheng Y, Li C. Int. J. Hydrogen Energ., 2018, 43: 6586.

[26]

He J, Sun H, Indrawirawan S, Duan X, Tade M O, Wang S. J. Colloid Interf. Sci., 2015, 456: 15.

[27]

Zhang M, Lai C, Li B, Huang D, Zeng G, Xu P, Qin L, Liu S, Liu X, Yi H, Li M, Chu C, Chen Z. J. Catal., 2019, 369: 469.

[28]

Ming L, Yue H, Xu L, Chen F. J. Mater. Chem. A, 2014, 2: 19145.

[29]

Qiu X, Zhao Y, Burda C. Adv. Mater., 2007, 19: 3995.

[30]

Zhong R, Zhang Z, Yi H, Zeng L, Tang C, Huang L, Gu M. Appl. Catal. B: Environ., 2018, 237: 1130.

[31]

Zhong R, Zhang Z, Luo S, Zhang Z C, Huang L, Gu M. Catal. Sci. Technol., 2019, 9: 75.

[32]

Fu J, Yu J, Jiang C, Cheng B. Adv. Energy Mater., 2018, 8: 1701503.

[33]

Zhao W, Hao N, Zhang G, Ma A, Chen W, Zhou H, Yang D, Xu B B, Kong J. Chem. Res. Chinese Universities, 2020, 36(6): 1271.

[34]

Li C, Sun Z, Zhang W, Yu C, Zheng S. Appl. Catal. B: Environ., 2018, 220: 272.

[35]

Ding Y, Gao Y, Li Z. Appl. Surf. Sci., 2018, 462: 255.

[36]

Che H, Liu C, Hu W, Hu H, Li J, Dou J, Shi W, Li C, Dong H. Catal. Sci. Technol., 2018, 8: 622.

[37]

Yan M, Hua Y, Zhu F, Gu W, Jiang J, Shen H, Shi W. Appl. Catal. B: Environ., 2017, 202: 518.

[38]

Wang B, Ding Y, Deng Z, Li Z. Chinese J. Catal., 2019, 40: 335.

[39]

Zhu M, Liu Q, Chen W, Yin Y, Ge L, Li H, Wang K. ACS Appl. Mater. Inter., 2017, 9: 38832.

[40]

Wang B, Deng Z, Fu X, Li Z. J. Mater. Chem. A, 2018, 6: 19735.

[41]

Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. J. Am. Ceram. Soc., 2019, 102: 1435.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/