Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant

Weijiang Guan , Xiaofang Tang , Wei Wang , Yanjun Lin , Chao Lu

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 116 -122.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (1) : 116 -122. DOI: 10.1007/s40242-020-0296-7
Article

Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant

Author information +
History +
PDF

Abstract

Although hydrophobic interface regions adjacent to water droplets play a vital role in microemulsion-based studies, their widespread applications have not been explicitly evoked owing to their small spaces. Herein, we designed and synthesized a novel double-tailed anionic surfactant(TPE-di-C8SS) by linking the propeller-shaped tetraphenylethylene(TPE) with two octyl chains and an anionic sulfonate headgroup through a methoxy-butyl spacer. The extra spacer and steric hindrance between rigid TPE groups can create the large cavities in hydrophobic interface regions, which we call the hydrophobic interface cages(HICs). The potentials and advantages of HICs in the easily-prepared TPE-di-C8SS microemulsion have been implemented by comparing the extraction efficiency towards cationic rhodamine B with Aerosol OT(AOT) microemulsion. The results provided solid evidence that HICs rather than water droplets contributed to a higher extraction efficiency. This work not only proposes a concept of HICs but also provides a new perspective of their utilization in microemulsion-based applications.

Keywords

Aggregation-induced emission / Hydrophobic interface cage / Tetraphenylethylene / Microemulsion

Cite this article

Download citation ▾
Weijiang Guan, Xiaofang Tang, Wei Wang, Yanjun Lin, Chao Lu. Hydrophobic Interface Cages in Microemulsions: Concept and Experiment Using Tetraphenylethylene-based Double-tailed Surfactant. Chemical Research in Chinese Universities, 2021, 37(1): 116-122 DOI:10.1007/s40242-020-0296-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nowothnick H, Blum J, Schomacker R. Angew. Chem. Int. Ed., 2011, 50: 1918.

[2]

Pera-Titus M, Leclercq L, Clacens J-M, De Campo F, Nardello-Rataj V. Angew. Chem. Int. Ed., 2015, 54: 2006.

[3]

Luisi P L. Angew. Chem. Int. Ed. Engl., 1985, 24: 439.

[4]

Chelazzi D, Giorgi R, Baglioni P. Angew. Chem. Int. Ed., 2018, 57: 7296.

[5]

Senske M, Smith A E, Pielak G J. Angew. Chem. Int. Ed., 201, 55: 3586.

[6]

Chapman R, Stenzel M H. J. Am. Chem. Soc., 2019, 141: 2754.

[7]

Gyger F, Bockstaller P, Gerthsen D, Feldmann C. Angew. Chem. Int. Ed., 2013, 52: 12443.

[8]

Wolf S, Feldmann C. Angew. Chem. Int. Ed., 201, 55: 15728.

[9]

Levinger N E. Science, 2002, 298: 1722.

[10]

Correa N M, Silber J J, Riter R E, Levinger N E. Chem. Rev., 2012, 112: 4569.

[11]

Faeder J, Ladanyi B M. J. Phys. Chem. B., 2000, 104: 1033.

[12]

Abel S, Sterpone F, Bandyopadhyay S, Marchi M. J. Phys. Chem. B, 2004, 108: 19458.

[13]

Crans D C, Levinger N E. Acc. Chem. Res., 2012, 45: 1637.

[14]

Garcia-Rio L, Leis J R, Moreira J A. J. Am. Chem. Soc., 2000, 122: 10325.

[15]

Moilanen D E, Fenn E E, Wong D, Fayer M D. J. Am. Chem. Soc., 2009, 131: 8318.

[16]

Long J A, Rankin B M, Ben-Amotz D. J. Am. Chem. Soc., 2015, 137: 10809.

[17]

Sedgwick M, Cole R L, Rithner C D, Crans D C, Levinger N E. J. Am. Chem. Soc., 2012, 134: 11904.

[18]

Crans D C, Rithner C D, Baruah B, Gourley B L, Levinger N E. J. Am. Chem. Soc., 200, 128: 4437.

[19]

Hasell T, Zhang H F, Cooper A I. Adv. Mater., 2012, 24: 5732.

[20]

Garcia-Simon C, Garcia-Borras M, Gomez L, Parella T, Osuna S, Juan-huix J, Imaz I, Maspoch D, Costas M, Ribas X. Nat. Commun., 2014, 5: 5557.

[21]

Cook T R, Stang P J. Chem. Rev., 2015, 115: 7001.

[22]

Feng H-T, Yuan Y-X, Xiong J-B, Zheng Y-S, Tang B Z. Chem. Soc. Rev., 2018, 47: 7452.

[23]

Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115: 11718.

[24]

Zhang C, Wang Z, Tan L, Zhai T-L, Wang S, Tan B, Zheng Y-S, Yang X-L, Xu H-B. Angew. Chem. Int. Ed., 2015, 54: 9244.

[25]

Zhang M, Saha M L, Wang M, Zhou Z, Song B, Lu C, Yan X, Li X, Huang F, Yin S, Stang P J. J. Am. Chem. Soc., 2017, 139: 5067.

[26]

Feng H-T, Lam J W Y, Tang B Z. Coord. Chem. Rev., 2020, 406: 213142.

[27]

Nave S, Eastoe J, Heenan R K, Steytler D, Grillo I. Langmuir, 2002, 18: 1505.

[28]

Nave S, Eastoe J, Heenan R K, Steytler D, Grillo I. Langmuir, 2000, 16: 8741.

[29]

Nave S, Paul A, Eastoe J, Pitt A R, Heenan R K. Langmuir, 2005, 21: 10021.

[30]

Guan W, Zhou W, Lu C, Tang B Z. Angew. Chem. Int. Ed., 2015, 54: 15160.

[31]

Guan W, Wang S, Lu C, Tang B Z. Nat. Commun., 201, 7: 11811.

[32]

Guan W, Yang T, Lu C. Angew. Chem. Int. Ed., 2020, 59: 12800.

[33]

Jain T K, Varshney M, Maitra A. J. Phys. Chem., 1989, 93: 7409.

[34]

Onori G, Santucci A. J. Phys. Chem., 1993, 97: 5430.

[35]

Temsamani M B, Maeck M, Hassani I E, Hurwitz H D. J. Phys. Chem. B, 1998, 102: 3335.

[36]

De T K, Maitra A. Adv. Colloid Interface Sci., 1995, 59: 95.

[37]

Yao Q, Wang S, Shi W, Lu C, Liu G. Ind. Eng. Chem. Res., 2017, 56: 583.

[38]

Rahdar A, Almasi-Kashi M, Khan A M, Aliahmad M, Salimi A, Guettari M, Kohne H E G. J. Mol. Liq., 2018, 252: 506.

[39]

Fathi H, Kelly J P, Vasquez V R, Graeve O A. Langmuir, 2012, 28: 9267.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/