Synthesis of Prebiotic Building Blocks by Photochemistry

Ziwei Liu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 985 -991.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 985 -991. DOI: 10.1007/s40242-020-0289-6
Review

Synthesis of Prebiotic Building Blocks by Photochemistry

Author information +
History +
PDF

Abstract

Ultraviolet(UV) light is a very competent energy source for the synthesis of prebiotic building blocks on early Earth. In aqueous solution, hydrated electron is produced by irradiating ferrocyanide/cuprous cyanide/hydrosulfide by 254 nm UV light. Hydrated electron is a powerful reducing reagent driving the formation of prebiotic building blocks under prebiotically plausible conditions. Here we summarize the photoredox synthesis of prebiotic related building blocks from hydrogen cyanide(HCN) and other prebiotically related molecules. These results indicate biological related building blocks can be generated on the surface of early Earth.

Keywords

Prebiotic chemistry / UV irradiation / System chemistry / Origin of life

Cite this article

Download citation ▾
Ziwei Liu. Synthesis of Prebiotic Building Blocks by Photochemistry. Chemical Research in Chinese Universities, 2020, 36(6): 985-991 DOI:10.1007/s40242-020-0289-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rimmer P B, Xu J, Thompson S J, Gillen E, Sutherland J D, Queloz D. Science Advances, 2018, 4: eaar3302.

[2]

Sasselov D D, Grotzinger J P, Sutherland J D. Science Advances, 2020, 6: eaax3419.

[3]

Miller S L. Science, 1953, 117: 528.

[4]

Oró J, Kimball A P. Archives of Biochemistry and Biophysics, 1962, 94: 217.

[5]

Butlerow A. CR Acad. Sci., 1861, 53: 145.

[6]

Ruiz-Mirazo K, Briones C, de la Escosura A. Chemical Reviews, 2014, 114: 285.

[7]

Liu Z, Mariani A, Wu L, Ritson D, Folli A, Murphy D, Sutherland J. Chemical Science, 2018, 9: 7053.

[8]

Xu J, Chmela V, Green N J, Russell D A, Janicki M J, Góra R W, Szabla R, Bond A D, Sutherland J D. Nature, 2020, 582: 60.

[9]

Liu Z., Wu L. F., Bond A. D., Sutherland J. D., Chemical Communication, 2020, https://doi.org/10.1039/D0CC05752E

[10]

Ritson D, Sutherland J D. Nature Chemistry, 2012, 4: 895.

[11]

Abou M N, Ajram G, Rossi J C, Boiteau L, Duvernay F, Pascal R, Danger G. Chemistry: A European Journal, 2017, 23: 7418.

[12]

Luther G W, Theberge S M, Rozan T F, Rickard D, Rowlands C C, Oldroyd A. Environmental Science & Technology, 2002, 36: 394.

[13]

Wirth T. Über Thioformamid und Kohlenmonosufid, 1910, Zurich: ETH Zurich

[14]

Ritson D J, Sutherland J D. Angewandte Chemie International Edition, 2013, 52: 5845.

[15]

Reynolds J E. Journal of the Chemical Society, 1869, 22: 1.

[16]

Lohrmann R, Orgel L E. Science, 1968, 767: 64.

[17]

Ritson D J, Sutherland J D. Journal of Molecular Evolution, 2014, 78: 245.

[18]

Strecker A. Justus Liebigs Annalen der Chemie, 1854, 91: 349.

[19]

Patel B H, Percivalle C, Ritson D J, Duffy C D, Sutherland J D. Nature Chemistry, 2015, 7: 301.

[20]

Keefe A D, Miller S L. Origins of Life and Evolution of the Biosphere, 199, 26: 111.

[21]

Shirom M, Stein G. The Journal of Chemical Physics, 1971, 55: 3372.

[22]

Marion G M, Kargel J S, Crowley J K, Catling D C. Icarus, 2013, 225: 342.

[23]

Halevy I, Zuber M T, Schrag D P. Science, 2007, 318: 1903.

[24]

Kaltenegger L, Sasselov D D. The Astrophysical Journal, 2010, 708: 1162.

[25]

Xu J, Ritson D J, Ranjan S, Todd Z R, Sasselov D D, Sutherland J D. Chemical Communications, 2018, 54: 5566.

[26]

Powner M W, Gerland B, Sutherland J D. Nature, 2009, 459: 239.

[27]

Steinman G, Lemmon R M, Calvin M. Science, 1965, 147: 1574.

[28]

Toner J D, Catling D C. Geochimica et Cosmochimica Acta, 2019, 260: 124.

[29]

Li L, Prywes N, Tam C P, O’Flaherty D K, Lelyveld V S, Izgu E C, Pal A, Szostak J W. Journal of the American Chemical Society, 2017, 139: 1810.

[30]

Walton T, Zhang W, Li L, Tam C P, Szostak J W. Angewandte Chemie International Edition, 2019, 131: 10926.

[31]

Becker S, Thoma I, Deutsch A, Gehrke T, Mayer P, Zipse H, Carell T. Science, 201, 352: 833.

[32]

Kim H J, Kim J. Astrobiology, 2019, 19: 669.

[33]

Becker S, Feldmann J, Wiedemann S, Okamura H, Schneider C, Iwan K, Crisp A, Rossa M, Amatov T, Carell T. Science, 2019, 366: 76.

[34]

Hein J E, Tse E, Blackmond D G. Nature Chemistry, 2011, 3: 704.

[35]

Xu J, Tsanakopoulou M, Magnani C J, Szabla R, Sponer J E, Sponer J, Gora R W, Sutherland J D. Nature Chemistry, 2017, 9: 303.

[36]

Xu J, Green N J, Gibard C, Krishnamurthy R, Sutherland J D. Nature Chemistry, 2019, 11: 457.

[37]

Liu Z, Rossi J-C, Pascal R. Life, 2019, 9: 26.

[38]

Pasek M A, Lauretta D S. Astrobiology, 2005, 5: 515.

[39]

Bryant D E, Kee T P. Chemcal Communications, 200, 22: 2344.

[40]

Gulick A. American Scientist, 1955, 43: 479.

[41]

Gulick A. Annals of the New York Academy of Sciences, 1957, 69: 309.

[42]

Ritson D J, Mojzsis S J, Sutherland J D. Nature Geoscience, 2020, 13: 344.

[43]

Ritson D J, Xu J, Sutherland J D. Synlett, 2017, 28: 64.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/