Synthesis of N-TiO2@NH2-MIL-88(Fe) Core-shell Structure for Efficient Fenton Effect Assisted Methylene Blue Degradation Under Visible Light

Huiting Yuan , Huizhen Ren , Minning Li , Zetong Li , Mingrui Liu , Wenjun Dong , Ge Wang , Tao Zhuang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1068 -1075.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1068 -1075. DOI: 10.1007/s40242-020-0285-x
Article

Synthesis of N-TiO2@NH2-MIL-88(Fe) Core-shell Structure for Efficient Fenton Effect Assisted Methylene Blue Degradation Under Visible Light

Author information +
History +
PDF

Abstract

Core-shell TiO2-based photocatalysts with specific composition, morphology, and functionality have attracted considerable attention for their excellent degradation properties on organic pollutants via a photocatalytic oxidation process. Herein, a N-TiO2@NH2-MIL-88(Fe) core-shell structure was prepared by coating NH2-MIL-88(Fe) on nitrogen-doped TiO2(N-TiO2) nanoparticles. Introduction of heteroatom nitrogen to pure TiO2 expands the spectral response range, leading to enhanced quantum efficiency of photocatalyst. Furthermore, loading NH2-MIL-88(Fe) on N-TiO2 improved the adsorption ability of the nanocomposites due to the porous tunnels of NH2-MIL-88(Fe). The resulted core-shell N-TiO2@NH2-MIL-88(Fe) nanocomposites realized the transfer of photo excited electrons from N-TiO2 to NH2-MIL-88(Fe) rapidly, partially reduced Fe3+ to Fe2+ in NH2-MIL-88(Fe), and further enhanced the Fenton effect on efficiently degrading methylene blue dye(MB) under visible light(λ≽420 nm) with the assistance of H2O2.

Keywords

NH2-MIL-88(Fe) / N-TiO2 / Photocatalysis / Fenton effect

Cite this article

Download citation ▾
Huiting Yuan, Huizhen Ren, Minning Li, Zetong Li, Mingrui Liu, Wenjun Dong, Ge Wang, Tao Zhuang. Synthesis of N-TiO2@NH2-MIL-88(Fe) Core-shell Structure for Efficient Fenton Effect Assisted Methylene Blue Degradation Under Visible Light. Chemical Research in Chinese Universities, 2020, 36(6): 1068-1075 DOI:10.1007/s40242-020-0285-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lv F, Ma Y, Xiang P, Shu T, Chen X. J. Alloy. Compd., 2020, 837: 155555.

[2]

Chen Y, Jiang Y, Wang X, Deng Q. IOP Conference Series: Earth and Environmental Science, 2018, 189(3): 32005.

[3]

Liao G, Liu Z, Sun B, Liu X, Han J, Ye H, Tu Y, Chen C, Shi T, Tang Z. J. Mater. Chem. A, 2018, 6(17): 7409.

[4]

Gao Q Z, Si F Y, Zhang S S, Fang Y P, Chen X B, Yang S Y. Int. J. Hydrog. Energy, 2019, 16(44): 8011.

[5]

Mittal A, Mari B, Sharma S, Kumari V, Maken S, Kumari K, Kumar N. J. Mater. Sci.-Mater. Electron., 2019, 30(4): 3186.

[6]

Wang Y, Jia K, Pan Q, Xu Y, Sun X. ACS Sustain. Chem. Eng., 2019, 7(1): 117.

[7]

Sotelo-Vazquez C, Noor N, Kafizas A, Quesada-Cabrera R, Scanlon D O, Taylor A, Durrant J R, Parkin I P. Chem. Mat., 2015, 27(9): 3234.

[8]

Sun XY, Zhang X, Sun X, Qian N X, Wang M, Ma Y Q. Beilstein J. Nanotechnol., 2019, 10: 2116.

[9]

Li H L, Zhang W J, Liu Y X. J. Mater. Res. Technol-JMRT, 2020, 2(9): 2557.

[10]

Dao X, Guo J, Wei Y, Guo F, Liu Y, Sun W. Inorg. Chem., 2019, 58(13): 8517.

[11]

Hu Q, Di J, Wang B, Ji M, Chen Y, Xia J, Li H, Zhao Y. Appl. Surf. Sci., 2019, 466: 525.

[12]

Gao Y, Xia J, Liu D, Kang R, Deng S. Chem. Eng. J, 2019, 378: 122118.

[13]

Chen C, Wu T, Wu H, Liu H, Qian Q, Liu Z, Yang G, Han B. Chem. Sci., 2018, 9(47): 8890.

[14]

Tran T V, Cao V D, Nguyen V H, Hoang B N, Vo D V N, Nguyen T D, Bach L G. J. Environ. Chem. Eng., 2020, 1(8): 102902.

[15]

Wang J, Xue C, Yao W Q, Liu J, Gao X X, Zong R L, Yang Z, Jin W J, Tao D P. Appl. Catal. B: Environ., 2019, 250: 369.

[16]

Zango Z U, Bakar N H H A, Sambudi N S, Jumbri K, Saadet B. J. Environ. Chem. Eng., 2019, 8(2): 103544.

[17]

Liang Z B, Qu C, Guo W H, Zou R Q, Xu Q. Adv. Mater., 2018, 37(30): 1870276.

[18]

Wang J, Xue C, Yao W Q, Liu J, Gao X X, Zong R L, Yang Z, Jin W J, Tao D P. Appl. Catal. B: Environ., 2019, 250: 369.

[19]

Zhou AW, Dou Y B, Zhao C, Zhou J, Wu X Q, Li J R. Appl. Catal. B: Environ., 2020, 264: 118519.

[20]

Kong X Q, Li JY, Yang C W, Tang Q, Wang D. Sep. Purif. Technol., 2020, 248: 116924.

[21]

Dong W J, Pang G S, Shi Z, Xu Y H, Jin HY, Shi R, Ma J J, Feng S H. Mater. Res. Bull., 2003, 3(39): 433.

[22]

Xiang G, Li T, Zhuang J, Wang X. Chem. Commun., 2010, 46(36): 6801.

[23]

Cao X, Zheng B, Rui X, Shi W, Zhang H. Angew. Chem. Int. Ed., 2014, 53(5): 1404.

[24]

Wang C C, Wang X, Liu W. Chem. Eng. J, 2020, 391: 123601.

[25]

Xie D, Ma Y, Gu Y, Zhou H, Zhang H, Wang G, Zhang Y, Zhao H. J. Mater. Chem. A, 2017, 5(45): 23794.

[26]

Qadir N U, Said S A M, Mansour R B, Mezghani K, Ul-Hamid A. Dalton. Trans., 201, 39(45): 15621.

[27]

Li X, Liu P, Mao Y, Xing M, Zhang J. Appl. Catal. B: Environ., 2015, 164: 352.

[28]

Kim W, Tachikawa T, Kim H, Lakshminarasimhan N, Murugan P, Park H, Majima T, Choi W. Appl. Catal. B: Environ., 2014, 147: 642.

[29]

Ke F, Qiu L G, Zhu J F. Nanoscale, 2014, 3(6): 1596.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/