Microwave-assisted Catalyzed Synthesis and In vitro Bioactivity Evaluation of Benzimidazoles Bearing Phenolic Hydroxyl

Liuqing Yan , Jiaxu Fu , Shuang Li , Jinlong Zhang , Shuang Wang , Qiang Gu , Yumin Zhang , Feng Lin

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 639 -646.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 639 -646. DOI: 10.1007/s40242-020-0274-0
Article

Microwave-assisted Catalyzed Synthesis and In vitro Bioactivity Evaluation of Benzimidazoles Bearing Phenolic Hydroxyl

Author information +
History +
PDF

Abstract

An efficient and facile method was introduced for the synthesis of benzimidazoles in this paper. The optimum reaction conditions were determined. A series of benzimidazoles bearing phenolic hydroxyl(2a—2t) were synthesized in moderate to excellent yields starting from differently substituted hydroxyl benzaldehyde and 4-position substituted o-phenylenediamine via nu-cleophilic addition in the presence of catalyst Na2S2O5 under microwave irradiation condition. Herein, effects of the catalyst, molar ratio of reactants, reaction temperature and solvent were investigated. The optimal reaction condition was determined. The effect of DMF and EtOH solvent on the reaction was compared. The synthesized compounds were characterized by FTIR, HRMS, 1H NMR and 13C NMR spectroscopy. Further, the bacteriostatic activities of the synthesized compounds were evaluated with ciprofloxacin and itraconazole as a positive control, respectively. Compounds 2b, 2n, 2q and 2r exhibited some antibacterial activity. The lowest MIC of antibacterial activity of compound 2b was 32 µg/mL. Meanwhile, the luminescence property of compound 2b was studied. The antibacterial activity of compound 2b, along with their good fluorescence performance highlighted the potential of these compounds as lead structures and owned fluorescence trace for further study towards the development of novel drugs and functional mechanisms in living organisms.

Keywords

Benzimidazole / Microwave irradiation / Solvent effect / Antimicrobial activity / Luminescence property

Cite this article

Download citation ▾
Liuqing Yan, Jiaxu Fu, Shuang Li, Jinlong Zhang, Shuang Wang, Qiang Gu, Yumin Zhang, Feng Lin. Microwave-assisted Catalyzed Synthesis and In vitro Bioactivity Evaluation of Benzimidazoles Bearing Phenolic Hydroxyl. Chemical Research in Chinese Universities, 2021, 37(3): 639-646 DOI:10.1007/s40242-020-0274-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang L, Dai X, Cai M, Zhao J, Zhou P. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 2014, 122: 656.

[2]

Song S, Kim J, Shim J, Lee B H, Jin Y, Lee K, Suh H. Sol. Energ. Mat. Sol. C., 2012, 98(5): 323.

[3]

Huang J J, Leung M K, Chiu T L, Chuang Y T, Chou P T, Hung Y H. Org. Lett., 2014, 16(20): 5398.

[4]

Kumar A, Banerjee S, Roy P, Sondhi S M, Sharma A. Mol. Divers., 2017, 22(1): 113.

[5]

Song D, Ma S. ChemMedChem, 201, 11(7): 646.

[6]

Chassaing C, Berger M, Heckeroth A, Ilg T, Jaeger M, Kern C, Schmid K, Uphoff M. J. Med. Chem., 2008, 51(5): 1111.

[7]

McKellar Q A, Scott E W. J. Vet. Pharmacol. Ther., 1990, 3: 223.

[8]

Guo M, Zheng C J, Song M X, Wu Y, Sun L P, Li Y J, Liu Y, Piao H R. Bioorg. Med. Chem., 2013, 23(15): 4358.

[9]

Luo Y L, Baathulaa K, Kannekanti V K, Zhou C H, Cai G X. Chin. Chem., 2015, 58: 483.

[10]

Cheong J E, Zaffagni M, Chung I, Xu Y, Wang Y, Jernigan F E, Zetter B R, Sun L. Eur. J. Med. Chem., 2018, 144: 372.

[11]

Mobinikhaledi A, Forughifar N, Kalhor M. Syn. React. Inorg. Me., 2009, 39: 509.

[12]

Sadek K U, Al-Qalaf F, Mekheimer R A, Elnagdi M H. Arab. J. Chem., 2010, 5: 63.

[13]

Bali A, Bansal M, Sugumaran M, Saggu J S, Balakumar P, Kaur G, Bansal G, Sharma A, Singh M. Bioorg. Med. Chem. Lett., 2005, 15(17): 3962.

[14]

Faine L A, Rudnicki M, César F A, Heras B L, Boscâ L, Souza E S, Hernandes M Z, Galdino S L, Lima M C, Pitta I R, Abdalla D S. Curr. Med. Chem., 2011, 18: 3351.

[15]

Shi Y P, Jiang K, Zheng R, Fu J X, Yan L Q, Gu Q, Zhang Y M, Lin F. Chem. Biodivers., 2019, 16: e1800510.

[16]

Nimesh H, Sur S, Sinha D, Yadav P, Anand P, Bajaj P, Virdi J S, Tandon V J. Med. Chem., 2014, 57: 5238.

[17]

Bandyopadhyay P, Sathe M, Ponmariappan S, Sharma A, Sharma P, Srivastava A, Kaushik M. Bioorg. Med. Chem. Lett., 2011, 21: 7306.

[18]

Sharma P, Rane N, Gurram V K. Bioorg. Med. Chem. Lett., 2004, 14: 4185.

[19]

Hohard A. H., John A. R., Patent number 3146240, US patent, 1964

[20]

Kus C, Sozudonmez F, Altanlar N. Pharm. Chem. Life Sci., 2009, 342: 54.

[21]

Chhajed S S, Upasani C D, Jagdal S B. J. Pharm. Res., 2010, 3: 1250.

[22]

Dudd L M, Venardou E, Garcia-Verdugo E, Licence P, Blake A J, Wilson C, Poliakoff M. Green Chem., 2003, 5: 187.

[23]

Zhang Z H, Yin L, Wang Y M. Catal. Commun., 2007, 8: 1126.

[24]

Gogoi P, Konwar D. Tetrahedron Lett., 200, 47: 79.

[25]

Taha M, Ismail N H, Imran S, Selvaraj M, Rashwan H, Farhanah F U, Rahim F K S, Ali M. Bioorg. Chem., 2015, 61: 36.

[26]

Chakrabarty M, Karmakar S, Mukherji A, Arima S, Harigaya Y. Hetero-cycles, 200, 68: 967.

[27]

Jiang Y, Jia S, Li X, Sun Y, Li W, Zhang W, Xu G. Chem. Pap., 2018, 72: 1265.

[28]

Baghbanzadeh M, Carbone L, Cozzoli P D. Angew. Chem. Int. Ed., 2011, 50: 11312.

[29]

Navarrete-Vâzquez G, Moreno-Diaz H, Estrada-Soto S. Synthetic Commun., 2007, 37: 2815.

[30]

Bui H T B, Ha Q T K, Oh W K. Tetrahedron Lett., 201, 57(8): 887.

[31]

Naeimi H, Alishahi N. J. Ind. Eng. Chem., 2014, 20(4): 2543.

[32]

Reyes-Gutiérrez P E, Kapal T, Klepetâfovâ B, Saman D, Pohl R, Zawada Z, Kužmová E, Hájek M, Teplý F. Sci. Rep., 201, 6: 2349.

[33]

Adegboye A A, Khan K M, Salar U, Aboaba S A, Kanwal S C, Fatima I, Taha M, Wadood A, Mohammad J I, Khan H, Perveen S. Eur. J. Med. Chem., 2018, 150: 248.

[34]

Zhang D W, Chen X D, Guo X, Zhang Y M, Hou Y Y, Zhao T, Gu Q. Monatsh. Chem., 201, 147: 1605.

[35]

Clinical and Laboratory Standards Institute NCCLS Document M38-A, 1998, 18: 1 Philadelphia, USA

[36]

Li B, Lin X, Zhang Y, Zhang D, Xiao Y, Lin F. Chem. Res. Chinese Universities, 2017, 33(1): 70.

[37]

Yan L Q, Chen Y, Sun X F, You M J, Chen X D, Gu Q, Zhang Y M. Chem. Pap., 2017, 71: 627.

[38]

Shi Y, Chen X, Mi Z, Zheng R, Fan J, Gu Q, Zhang Y. Chem. Res. Chinese Universities, 2019, 35(2): 200.

[39]

Bandyopadhyay P, Sathe M, Ponmariappan S, Sharma A, Sharma P, Srivastava A, Kaushik M. Bioorg. Med. Chem. Lett., 2011, 21: 7306.

[40]

Yeong K Y, Ali M A, Choon T S. Cheminform, 2014, 55(34): 4697.

[41]

Başak T E, Mahmut B. Ind. Eng. Chem. Res., 2014, 53(33): 13016.

[42]

Bassyouni F A, Abu-Bakr S M, Rehim M A. Res. Chem. Intermediate., 2012, 38: 283.

[43]

Kappe C O, Stadler A. Microwave Theory, 2006, Berlin: Wiley-Vch Verlag GmbH & Co. KgaA 9.

[44]

Fekner T, Gallucci J, Chan M K. J. Am. Chem. Soc., 2004, 126: 223.

[45]

Goker H, Kuş C, Boykin D W, Yildiz S, Altanlar N. Bioorg. Med. Chem., 2002, 10: 2589.

[46]

Goodwin K D, Lewis M A, Tanious F A, Tidwell R R, Wilson W D, Georgiadis M M, Long E C. J. Am. Chem. Soc., 200, 128: 7846.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/