Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts

Yuan Li , Ruizhe Li , Zhenhua Li , Weiqin Wei , Shuxin Ouyang , Hong Yuan , Tierui Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1006 -1012.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1006 -1012. DOI: 10.1007/s40242-020-0253-5
Article

Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts

Author information +
History +
PDF

Abstract

Photothermal Fischer-Tropsch synthesis(FTS) has been extensively studied, but few reports were focused on systematically exploring the influence of support on catalytic performance. Herein, a series of Fe5C2-based catalysts with different supports was fabricated via a one-step wet-chemical method for photothermal conversion of syngas to lower olefins. Under light irradiation, the optimized Fe5C2/α-Al2O3 catalyst demonstrated remarkable photothermal FTS activity, delivering selectivity to lower olefins of 50.3% with a CO conversion rate of 52.5%. Characterization studies using X-ray diffraction and Mössbauer spectroscopy analysis revealed that the active catalyst mainly contained Fe5C2 nanoparticles on α-Al2O3 support. It was found that the weak interaction between active phase and α-Al2O3 could promote the formation of Fe5C2, which contributed to the high selectivity to lower olefins.

Keywords

χFe5C2 catalyst / Fischer-Tropsch synthesis / Metal-support interaction / Photothermal catalysis

Cite this article

Download citation ▾
Yuan Li, Ruizhe Li, Zhenhua Li, Weiqin Wei, Shuxin Ouyang, Hong Yuan, Tierui Zhang. Effect of Support on Catalytic Performance of Photothermal Fischer-Tropsch Synthesis to Produce Lower Olefins over Fe5C2-based Catalysts. Chemical Research in Chinese Universities, 2020, 36(6): 1006-1012 DOI:10.1007/s40242-020-0253-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Su J J, Zhou H B, Liu S, Wang C M, Jiao W Q, Wang Y D, Liu C, Ye Y C, Zhang L, Zhao Y, Liu H X, Wang D, Yang W M, Xie Z K, He M Y. Nat. Commun., 2019, 10(1): 1297.

[2]

Galvis H M T, de Jong K P. ACS Catal., 2013, 3(9): 2130.

[3]

Cheng K, Gu B, Liu X L, Kang J C, Zhang Q H, Wang Y. Angew. Chem. Int. Ed., 201, 55(15): 4725.

[4]

Sadrameli S. M., Fuel, 2016, 173, 285

[5]

Corma A., Melo F. V., Sauvanaud L., Ortega F., Catal. Today, 2005, 107, 699

[6]

Li Z H, Liu J J, Zhao Y F, Waterhouse G I N, Chen G B, Shi R, Zhang X, Liu X W, Wei Y M, Wen X D, Wu L Z, Tung C H, Zhang T R. Adv. Mater., 2018, 30(31): 1800527.

[7]

Carlos Serrano-Ruiz J, Dumesic J A. Energy Environ. Sci., 2011, 4(1): 83.

[8]

Jiao F, Li J J, Pan X L, Xiao J P, Li H B, Ma H, Wei M M, Pan Y, Zhou Z Y, Li M R, Miao S, Li J, Zhu Y F, Xiao D, He T, Yang J H, Qi F, Fu Q, Bao X. Science, 201, 351(6277): 1065.

[9]

Chen X Q, Deng D H, Pan X L, Hu Y F, Bao X H. Chem. Commun., 2015, 51(1): 217.

[10]

Xu Y., Wang J., Ma G., Bai J., Du Y., Ding M., Fuel, 2020, 275, 117884

[11]

Schulz H. Appl. Catal. A: Gen., 1999, 186(1/2): 3.

[12]

Santos V P, Wezendonk T A, Delgado Jaen J J, Dugulan A I, Nasalevich M A, Islam H U, Chojecki A, Sartipi S, Sun X, Hakeem A A, Koeken A C J, Ruitenbeek M, Davidian T, Meima G R, Sankar G, Kapteijn F, Makkee M. Gascon J., Nat. Commun., 2015, 6(1): 6451.

[13]

Liu Y, Chen J F, Bao J, Zhang Y. ACS Catal., 2015, 5(6): 3905.

[14]

Wang P, Chen W, Chiang F K, Dugulan A I, Song Y J, Pestman R, Zhang K, Yao J S, Feng B, Miao P, Xu W, Hensen E J M. Sci. Adv., 2018, 4(10): 2947.

[15]

Wang D, Chen B X, Duan X Z, Chen D, Zhou X G. J. Energy Chem., 201, 25(6): 911.

[16]

Han W F, Wang L Y, Li Z, Tang H D, Li Y, Huo C, Lan G J, Yang X Z, Liu H Z. Appl. Catal. A: Gen., 2019, 572: 158.

[17]

Yang C, Zhao H B, Hou Y L, Ma D. J. Am. Chem. Soc., 2012, 134(38): 15814.

[18]

Tong H, Ouyang S X, Bi Y P, Umezawa N, Oshikiri M, Ye J H. Adv. Mater., 2012, 24(2): 229.

[19]

Ren J, Ouyang S X, Xu H, Meng X G, Wang T, Wang D F, Ye J H. Adv. Energy Mater., 2017, 7(5): 1601657.

[20]

Wang Y S, Zhao Y F, Liu J J, Li Z H, Waterhouse G I N, Shi R, Wen X D, Zhang T R. Adv. Energy Mater., 2020, 10(5): 1902860.

[21]

Ning S B, Xu H, Qi Y H, Song L Z, Zhang Q Q, Ouyang S X, Ye J H. ACS Catal., 2020, 10(8): 4726.

[22]

Zhao L K, Qi Y H, Song L Z, Ning S B, Ouyang S X, Xu H, Ye J H. Angew. Chem. Int. Ed., 2019, 58(23): 7708.

[23]

Zhou S Q, Shang L, Zhao Y X, Shi R, Waterhouse G I N, Huang Y C, Zheng L R, Zhang T R. Adv. Mater., 2019, 31(18): 1900509.

[24]

Gao W, Gao R, Zhao Y F, Peng M, Song C Q, Li M Z, Li S W, Liu J J, Li W Z, Deng Y C, Zhang M T, Xie J L, Hu G, Zhang Z S, Long R, Wen X D, Ma D. Chem, 2018, 4(12): 2917.

[25]

Ellis P R, Enache D I, James D W, Jones D S, Kelly G J. Nat. Catal., 2019, 2(7): 623.

[26]

Wen B C, Li J, Lin Y Q, Liu X D, Fu J, Miao H, Zhang Q M. Mater. Chem. Phys., 2011, 128(1): 35.

[27]

Wei J, Ge Q J, Yao R W, Wen Z Y, Fang C Y, Guo L S, Xu H Y, Sun J. Nat. Commun., 2017, 8(1): 16170.

[28]

Guo L S, Sun J, Ji X W, Wei J, Wen Z Y, Yao R W, Xu H Y, Ge Q J. Commun. Chem., 2018, 1(1): 11.

[29]

Qing M, Yang Y, Wu B S, Xu J, Zhang C H, Gao P, Li Y W. J. Catal., 2011, 279(1): 111.

[30]

Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S R, Qiao M H, Zhang X X, Zong B N. Nat. Commun., 2014, 5(1): 5783.

[31]

Raupp G B, Delgass W N. J. Catal., 1979, 58(3): 348.

[32]

Li G, Smith R L Jr., Inomata H. J. Am. Chem. Soc., 2001, 123(44): 11091.

[33]

Chang Q, Zhang C H, Liu C W, Wei Y X, Cheruvathur A V, Dugulan A I, Niemantsverdriet J W, Liu X W, He Y R, Qing M, Zheng L R, Yun Y F, Yang Y, Li Y W. ACS Catal., 2018, 8(4): 3304.

[34]

Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, De Jong K P. Science, 2012, 335(6070): 835.

[35]

Gribovalconstant A, Giraudon J, Leclercq G, Leclercq L. Appl. Catal. A: Gen., 2004, 260(1): 35.

[36]

Filot I A W, Zijlstra B, Broos R J P, Chen W, Pestman R, Hensen E J M. Faraday. Discuss., 2017, 197: 153.

[37]

Pendyala V R R, Shafer W D, Jacobs G, Davis B H. Catal. Lett., 2014, 144(6): 1088.

[38]

Bukur D B, Lang X, Mukesh D, Zimmerman W H, Rosynek M P, Li C. Ind. Eng. Chem. Res., 1990, 29(8): 1588.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/