Photocatalytic Hydrogen Evolution Performance for Hydroxyl-rich Porous Carbon Nitride

Yan Wang , Liping Li , Guangshe Li

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1053 -1058.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1053 -1058. DOI: 10.1007/s40242-020-0246-4
Article

Photocatalytic Hydrogen Evolution Performance for Hydroxyl-rich Porous Carbon Nitride

Author information +
History +
PDF

Abstract

Metal-free photocatalyst C3N4 has been well investigated, while how to create hydroxyl-rich porous C3N4 remains a great challenge. Herein, we report a facile approach to address this issue by developing a novel two-step process: (i) precursor achieved via freeze-drying the mixture of urea, thiourea and NH4Cl; (ii) subsequent thermal polydensation of the precursor. Systematic sample characterization demonstrated the formation of C3N4 featured by unique hydroxyl-rich porous structure with an extended tri-s-triazine unit. When applied as photocatalyst for water splitting under UV-Vis light irradiation, the sample displays a high hydrogen evolution rate of 243.4 µmol·g−1·h−1, about 4 times higher than that of C3N4 prepared by conventional method. Such a performance enhancement could be due to the porous structure and surface hydroxyl-rich functional groups that promote multiple-times reflection and light absorption, increase the active site numbers, and improve carrier transfer/separation efficiency.

Keywords

Hydroxyl-rich / Porous structure / Carrier transfer/separation efficiency / Hydrogen evolution

Cite this article

Download citation ▾
Yan Wang, Liping Li, Guangshe Li. Photocatalytic Hydrogen Evolution Performance for Hydroxyl-rich Porous Carbon Nitride. Chemical Research in Chinese Universities, 2020, 36(6): 1053-1058 DOI:10.1007/s40242-020-0246-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang D, Ye P, Li K, Zeng H, Nie Y, Dong F, Xing Q, Zou J. Appl. Catal. B: Environ., 2020, 260: 118182.

[2]

Zhao W., Hao N., Zhang G., Ma A., Chen W., Zhou H., Yang D., Xu B., Kong J., Chem. Res. Chinese Universities, 2020, Doi:https://doi.org/10.1007/s40242-020-0073-7

[3]

Wang Q, Wang X, Yu Z, Jiang X, Chen J, Tao L, Wang M, Shen Y. Nano Energy, 2019, 60: 827.

[4]

Cheng J, Xu Y, Zhou D, Liu K, Geng N, Liu J, Yong X, Liu J. Poultry Science, 2019, 98(11): 5315.

[5]

Wei Y, Li Y, Jing C. Appl. Catal. B: Environ., 2019, 244: 475.

[6]

Wang W, Zhang H, Zhang S, Liu Y, Wang G, Sun C, Zhao H. Angew. Chem. Int. Ed., 2019, 58: 16644.

[7]

Liu Y, Zhou F, Zhan S, Yang Y, Yin Y. Chem. Res. Chinese Universities, 201, 32(2): 284.

[8]

Qi Y. H., Xu J. X., Wang C., Zhang T. R., Wang L., Chem. Res. Chinese Universities, 2020, Doi: https://doi.org/10.1007/s40242-020-0067-5

[9]

Ren W, Cheng J, Ou H, Huang C, Titirici M, Wang X. ChemSusChem., 2019, 12(14): 3257.

[10]

Yao S, Xue S, Peng S, Guo R, Wu Z, Shen X, Li T, Wang L. Appl. Phys. A, 2018, 124: 758.

[11]

Marcìa G., García-Lópeza E., Pomillaa F., Palmisanoa L., Zafforab A., Santamariab M., Krivtsovc I., Ilkaevae M., Barbierikováf Z., Brezová V., Catal. Today, 2019, 21

[12]

Guo S, Deng Z, Li M, Jiang B, Tian C, Pan Q, Fu H. Angew. Chem., Int. Ed., 201, 55: 1830.

[13]

Yuan J, Yi X, Tang Y, Liu C, Luo S. ACS Appl. Mater. Interfaces, 2020, 12: 19607.

[14]

Wang Y, Li L, Zhang Y, Zhang N, Fang S, Li G. Int. J. Hydrog. Energy, 2017, 42: 21006.

[15]

Zeng Y, Li H, Luo J, Yuan J, Wang L, Liu C, Xia Y, Liu M, Luo S, Cai T, Liu S, Crittenden J C. Appl. Catal. B: Environ., 2019, 249: 275.

[16]

Zheng Y, Zhang Z, Li C, Proulx S. Materials Research Bulletin, 201, 84: 46.

[17]

Yu S, Li J, Zhang Y. Nano Energy, 2018, 50: 383.

[18]

Sano T, Sato H, Hori T, Hirakawa T, Teramoto Y, Koike K. Mol. Catal., 2019, 474: 110451.

[19]

Dong G, Chen D, Luo J, Zhu Y, Zeng Y, Wang C. J. Hazard. Mater., 2017, 335: 66.

[20]

Lin L, Ou H, Zhang Y, Wang X. ACS Catal., 201, 6: 3921.

[21]

Li F, Han M, Jin Y, Wang X. Appl. Catal. B: Environ., 2019, 256: 117705.

[22]

Wang H, Bian Y, Hua J, Dai L. Appl. Catal. B: Environ., 2018, 238: 592.

[23]

Bai J, Lv W, Ni Z, Wang Z, Chen G, Xu H, Qin H, Zheng Z, Li X. J. Alloys Compd., 2018, 768: 766.

[24]

Sundaram I M, Kalimuthu S, Priya P G. Mater. Chem. Phys., 2018, 204: 243.

[25]

Chen Z, Lu S, Wu Q, He F, Zhao N, He C, Shi C. Nanoscale, 2018, 10: 3008.

[26]

Wu X, Chen F, Wang X, Yu H. Appl. Surf. Sci., 2018, 427: 645.

[27]

Li Y, Xu H, Ouyang S, Wang X, Wang D, Ye J. J. Mater. Chem., 201, 4(8): 2943.

[28]

Kong Y, Lv C, Zhang C, Chen G. Appl. Surf. Sci., 2020, 515: 146009.

[29]

Liu J, Fang W, Wei Z, Qin Z, Jiang Z, Shanggean W. Appl. Catal. B: Environ., 2018, 238: 465.

[30]

Wang X L, Fang W Q, Liu W, Jia Y, Jing D, Wang Y, Yang Y, Gong X, Yao Y, Yang H G, Yao X. J. Mater. Chem., 2017, 5(36): 19227.

[31]

Wang Y, Li L, Zhang J, Huang X, Li G. Chem. Res. Chinese Universities, 2013, 29(3): 556.

[32]

Xu C, Li K, Zhang W. J. Colloid. Interf. Sci., 2017, 495: 27.

[33]

Qian X, Meng X, Sun J, Jiang L, Wang Y, Zhang J, Hu X, Shalom M, Zhu J. ACS Appl. Mater. Interfaces, 2019, 11(30): 27226.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/