Co3O4 Decorated Ti/TiO2 Nanotubes for Photogenerated Cathodic Protection of 304 Stainless Steel

Wenfeng Li , Xue Fang , Jiahui Lyu , Guowen Wang , Chun Ma , Hongchao Ma

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 704 -710.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 704 -710. DOI: 10.1007/s40242-020-0226-8
Article

Co3O4 Decorated Ti/TiO2 Nanotubes for Photogenerated Cathodic Protection of 304 Stainless Steel

Author information +
History +
PDF

Abstract

The Co3O4 decorated TiO2 nanotube arrays(NTAs) coatings are fabricated by the combination of anodization and impregnating methods. It is found that the introduction of Co3O4 can reduce the diffraction intensity of (101) plane of the TiO2 and accelerate the separation of photogenerated electron/hole pairs. In addition, the open circuit potential(OCP) and the corrosion potential of 304 stainless steel(304SS) with or without Co3O4 decorated TiO2 NTAs were measured under visible light, which indicated the 304SS coupled with Co3O4 decorated TiO2 NTAs had better anticorrosion performance than that of the 304SS or the 304SS coupled with pure TiO2 NTAs. The enhancement of the cathodic protection performance of the Co3O4 decorated TiO2 NTAs can be ascribed to the matched energy levels and strong interaction between Co3O4 and TiO2 NTAs, and the improvement of light absorption.

Keywords

Photogenerated cathodic protection / Corrosion / Stainless steel / Ti/TiO2Co3O4

Cite this article

Download citation ▾
Wenfeng Li, Xue Fang, Jiahui Lyu, Guowen Wang, Chun Ma, Hongchao Ma. Co3O4 Decorated Ti/TiO2 Nanotubes for Photogenerated Cathodic Protection of 304 Stainless Steel. Chemical Research in Chinese Universities, 2021, 37(3): 704-710 DOI:10.1007/s40242-020-0226-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin Z Q, Lai Y K, Hu R G, Li J, Du R G, Lin C J. Electrochim. Acta, 2010, 55: 8717.

[2]

Lv L P, Zhao Y, Vilbrandt N, Galilei M, Vimalanandan A, Rohwerder M. J. Am. Chem. Soc., 2013, 135: 14198.

[3]

Vimalanandan A, Lv L P, Tran T H, Landfester K, Crespy D, Rohwerder M. Adv. Mater., 2013, 25: 6980.

[4]

Popova A, Sokolova E, Raicheva S, Christov M. Corrosion Sci., 2003, 45: 33.

[5]

Aghzzaf A, Rhouta B, Rocca E, Khalil A, Steinmetz J. Corrosion Sci., 2014, 80: 46.

[6]

Sun W, Cui S, Wei N. J. Alloys Compd., 2018, 749: 741.

[7]

Cheng W, Li C, Ma X, Yu L, Liu G. Mater. Des., 2017, 126: 155.

[8]

Cui S, Yin X, Yu Q. Corrosion Sci., 2015, 98: 471.

[9]

Park H, Choi W, Kim K Y. Chem. Commun., 2001, 569: 281.

[10]

Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M. Chem. Rev., 2014, 114: 9919.

[11]

Yun H, Lin C, Li J, Wang J, Chen H. Appl. Surf. Sci., 2008, 255: 2113.

[12]

Yuan J, Tsujikawa S. J. Electrochem. Soc., 1995, 142: 3444.

[13]

Doslu S T, Mert B D, Yazici B. Corrosion Sci., 2013, 66: 51.

[14]

Meth S, Savchenko N, Koltypin M, Starosvetsky D, Viva F A, Groysman A. Corrosion Sci., 2010, 52: 125.

[15]

Li H, Wang X, Zhang L, Hou B. Corrosion Sci., 2015, 94: 342.

[16]

Tang W, Xia J, Chen X, Gong J, Zeng X. Mater. Sci. Eng. B, 2014, 187: 39.

[17]

Pirzada B M, Mir N A, Qutub N, Mehraj O, Sabir S, Muneer M. Mater. Sci. Eng. B., 2015, 193: 137.

[18]

Obregon S, Munoz-Batista M, Fernandez-Garcia M. Appl. Catal. B Environ., 2015, 179: 468.

[19]

Tseng I H, Wu J C S, Chou H Y. J. Catal., 2004, 221: 432.

[20]

Xu Z, Yu J. Nanoscale, 2011, 3: 3138.

[21]

Kim D, Hong H, Kim S, Song J, Lee K. J. Alloys Compd., 2004, 375: 259.

[22]

Luo S, Yan B, Shen J. ACS Appl. Mater. Interfaces, 2014, 6: 8942.

[23]

Zhu M, Zhai C, Qiu L, Lu C, Paton A S, Du Y. ACS Sustainable Chem. Eng., 2015, 3: 3123.

[24]

Arman S, Omidvar H, Tabaian S, Sajjadnejad M, Afshar S. Surf. Coat Technol., 2014, 251: 162.

[25]

Mollavali M, Falamaki C, Rohani S. Int. J. Hydrogen Energy, 2015, 40: 12239.

[26]

Zhou X, Peng F, Wang H, Yu H, Yang J. Electrochem. Commun., 2011, 13: 121.

[27]

Park H, Bak A, Jeon T. Appl. Catal. B Environ., 2012, 115/116: 74.

[28]

Hu J, Liu Q, Zhang H, Chen C, Liang Y, Du R, Lin C. J. Mater. Chem. A, 2015, 3: 22605.

[29]

Hu J, Guan Z, Liang Y, Zhou J, Liu Q, Wang H, Du R. Corrosion Sci., 2017, 125: 59.

[30]

Han C, Shao Q, Lei J, Zhu Y, Ge S. J. Alloys Compd., 2017, 703: 530.

[31]

Tan C, Zhu G, Hojamberdiev M, Okada K, Liang J, Luo X, Liu Y. Appl. Catal. B Environ., 2014, 152/153: 425.

[32]

Warang T, Patel N, Santini A, Bazzanella N, Kale A, Miotello A. Appl. Catal. A Gen., 2012, 423/424: 21.

[33]

Jiao F, Frei H. Angew Chem. Int. Ed., 2009, 48: 1841.

[34]

Lee K, Mazare A, Schmuki P. Chem. Rev., 2014, 114: 9385.

[35]

Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris R C, Li Y. Nano Lett., 2011, 11: 3026.

[36]

Li W, Xu L, Chen J. Adv. Funct. Mater., 2005, 15: 85.

[37]

Pan J, Han G, Zhou R. Chem. Commun., 2011, 47: 6942.

[38]

Li X, Hou Y, Zhao Q, Quan X, Chen G. Adv. Funct. Mater., 2010, 20: 2165.

[39]

Wang X, Wu Q, Ma H, Ma C, Yu Z, Fu Y, Dong X. Sol. Energy Mater. Sol. Cells, 2019, 197: 381.

[40]

Lyu J, Han H, Wu Q, Ma H, Ma C, Dong X. J. Solid State Electrochem., 2019, 23: 847.

[41]

Biesinger M, Payne B, Grosvenor A, Lau L, Gerson A, Smart R. Appl. Surf. Sci., 2011, 257: 2717.

[42]

Ma H, Wang X, Fu Y, Zhang Y, Ma C, Dong X. J. Solid State Electrochem., 2019, 23: 1767.

[43]

Yan K, Chi J, Xie J, Dong B, Liu Z, Gao W, Liu C. Renew Energy, 2018, 119: 54.

[44]

Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma D. ACS Nano., 2017, 11: 12365.

[45]

Wang X, Xia R, Muhire E, Jiang S, Huo X, Gao M. Appl. Surf. Sci., 2018, 459: 9.

[46]

Li Q, Gao T, Wang Y, Wang T H. Appl. Phys. Lett., 2005, 86: 509.

[47]

Wang X, Wei Q, Zhang L, Sun H, Li H, Zhang Q. Mater. Sci. Eng. B, 201, 208: 22.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/