Synthesis of a Novel Co-B/CTAB Catalyst via Solid-state-reaction at Room Temperature for Hydrolysis of Ammonia-borane

Haibin Hu , Bo Long , Yifan Jiang , Shichang Sun , Ibrahim Lawan , Weiming Zhou , Mingxin Zhang , Liwei Wang , Fan Zhang , Zhanhui Yuan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1209 -1216.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1209 -1216. DOI: 10.1007/s40242-020-0209-9
Article

Synthesis of a Novel Co-B/CTAB Catalyst via Solid-state-reaction at Room Temperature for Hydrolysis of Ammonia-borane

Author information +
History +
PDF

Abstract

Cobalt-boride(Co-B) is emerging as one of the promising materials in the base-hydrolytic dehydrogenation of ammonia-borane(AB). In order to avoid the low specific area and poor catalytic capacity of Co-B catalyst caused by aggregation arising from the strong reducing property and rapid reaction condensation of sodium borohydride(NaBH4), novel cobalt boride/cetyltrimethylammonium bromide(Co-B/CTAB) catalyst was obtained via solidstate grinding at room temperature, and the catalyst was further characterized by XRD, SEM, XPS and BET. The hydrogen generation rate(HGR) was then determined by the hydrolysis reaction of AB. The SEM images indicate that a lot of irregular folds and curled edges are formed on the sample with a maximum surface area of 145.57 m2/g, thus possibly resulting in the high hydrogen production(HGR was 10.68 L·min−1·g−1), which may be attributed to CTAB that provide favorable large specific surface area and abundant porous structure. Additionally, catalyst will not be affected by solvants during solid-state reaction. As a diluent, the surfactant CTAB hindered the reaction rate of sodium borohydride reduction to cobalt boride and obtained the novel catalyst with a large specific surface area.

Keywords

Hydrogen generation rate / Ammonia borane / Co-B / Solid-state reaction

Cite this article

Download citation ▾
Haibin Hu, Bo Long, Yifan Jiang, Shichang Sun, Ibrahim Lawan, Weiming Zhou, Mingxin Zhang, Liwei Wang, Fan Zhang, Zhanhui Yuan. Synthesis of a Novel Co-B/CTAB Catalyst via Solid-state-reaction at Room Temperature for Hydrolysis of Ammonia-borane. Chemical Research in Chinese Universities, 2020, 36(6): 1209-1216 DOI:10.1007/s40242-020-0209-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. Adv. Energy Mater., 2018, 8: 1800584.

[2]

Li J, Zhou Q, Zhong C, Li S, Shen Z, Pu J, Liu J, Zhou Y, Zhang H, Ma H. ACS Catalysis, 2019, 9: 3878.

[3]

Masa J., Piontek S., Wilde P., Antoni H., Eckhard T., Chen Y., Muhler M., Apfel U., Schuhmann W., Advanced Energy Materials, 2019, 1900796

[4]

Wei Z, Liu Y, Peng Z, Song H, Liu Z, Liu B, Li B, Yang B, Lu S. ACS Sustainable Chemistry and Engineering, 2019, 7: 7014.

[5]

Long B, Yang H, Li M, Balogun M S, Mai W, Ouyang G, Tong Y, Tsiakaras P, Song S. Applied Catalysis B: Environmental, 2019, 243: 365.

[6]

Wang Y, Vogel A, Sachs M, Sprick R S, Wilbraham L, Moniz S J A, Godin R, Zwijnenburg M A, Durrant J R, Cooper A I, Tang J. Nat. Energy, 2019, 4: 746.

[7]

Yüksel A C, Gülbay S K, Ozgur C C. Int. J. Hydrogen Energy, 2019, 45: 3414.

[8]

Yang X, Li Q, Li L, Lin J, Yang X, Yu C, Liu Z, Fang Y, Huang Y, Tang C. Journal of Power Sources, 2019, 431: 135.

[9]

Liu Y, Zhang Z, Fang Y, Liu B, Huang J, Miao F, Bao Y, Dong B. Applied Catalysis B: Environmental, 2019, 252: 164.

[10]

Du R., Jin X., Hübner R., Fan X., Hu Y., Eychmüller A., Advanced Energy Materials, 2019, 1901945

[11]

Echeverri A, Cárdenas C, Calatayud M, Hadad C Z, Gomez T. Surf. Sci., 2019, 680: 95.

[12]

Özhava D, Özkar S. Appl. Catal. B Environ., 2018, 237: 1012.

[13]

Xu Q, Chandra M. J. Power Sources, 200, 163: 364.

[14]

Chandra M, Xu Q. J. Power Sources, 2007, 168: 135.

[15]

Huang Y, Wang Y, Zhao R, Shen P K, Wei Z. Int. J. Hydrogen Energy, 2008, 33: 7110.

[16]

Krishnan P, Advani S G, Prasad A K. Appl. Catal. B Environ., 2009, 86: 137.

[17]

Patel N, Fernandes R, Guella G, Miotello A. Applied Catalysis B: Environmental, 2010, 95: 137.

[18]

Shi L, Chen Z, Jian Z, Guo F, Gao C. Int. J. Hydrogen Energy, 2019, 44: 19868.

[19]

Shi L, Xie W, Jian Z, Liao X, Wang Y. Int. J. Hydrogen Energy, 2019, 44: 17954.

[20]

Wang X, Liao J, Li H, Wang H, Wang R. Int. J. Hydrogen Energy, 2017, 42: 6646.

[21]

Llombart P, Palafox M A, MacDowell L G, Noya E G. Colloids Surfaces A: Physicochem. Eng. Asp, 2019, 580: 123730.

[22]

Gupta S, Patel N, Fernandes R, Kothari D, Miotello A C. Int. J. Hydrogen Energy, 2013, 38(34): 14685.

[23]

Wang X, Liao J, Li H, Wang H, Wang R. Journal of Colloid and Interface Science, 201, 475: 149.

[24]

Baiker A. Faraday Discuss. Chem. Soc., 1989, 87: 239.

[25]

Metin Ö, Özkar S. Energy and Fuels, 2009, 23(7): 3517.

[26]

Nsanzimana J. M. V., Gong L., Dangol R., Reddu V., Jose V., Xia B. Y., Yan Q., Lee J. M., Wang X., Advanced Energy Materials, 2019, 1901503

[27]

Gupta S, Patel N, Fernandes R, Kothari D C, Miotello A. Int. J. Hydrogen Energy, 2013, 38: 14685.

[28]

Wu S H, Chen D H. J. Colloid Interface Sci., 2004, 273(1): 165.

[29]

Gao J, Bender C M, Murphy C. J. Langmuir, 2003, 19(21): 9065.

[30]

Cui Z, Guo Y, Ma J. Int. J. Hydrogen Energy, 201, 41(3): 1592.

[31]

Gupta S, Patel N, Miotello A, Kothari D C. J. Power Sources, 2015, 279: 620.

[32]

Lu W, Liu T, Xie L, Tang C, Liu D, Hao S, Qu F, Du G, Ma Y, Asiri A M, Sun X. Small, 2017, 13(32): 1.

[33]

Jiang J, Wang M, Yan W, Liu X, Liu J, Yang J, Sun L. Nano Energy, 2017, 38: 175.

[34]

Jiang B, Song H, Kang Y, Wang S, Wang Q, Zhou X. Chemical Science, 2020, 11: 791.

[35]

Yan Y, Liao J, Li H, Feng K, Wang H, Wang R, Li S, Ji S. International Journal of Electrochemical Science, 201, 11: 226.

[36]

Kantürk F A, Coşkuner B. International Journal of Hydrogen Energy, 2013, 38: 2824.

[37]

Meşe E, Kantürk F A, Filiz C B. Applied Clay Science Journal, 2018, 153: 95.

[38]

Andrieux J, Demirci U B, Miele P. Catal. Today, 2011, 170(1): 13.

[39]

Yun R, Ma W, Wang S, Jia W, Zheng B. Inorg. Chem., 2019, 58(9): 6137.

[40]

Kumar V, Roy B, Sharma P. Int. J. Hydrogen Energy, 2019, 44: 22022.

[41]

Yan J, Liao J, Li H, Wang H, Wang R. Catalysis Communications, 201, 84: 124.

[42]

Meşe E, Kantürk F A, Coşkuner F B, Pişkin S. Appl. Clay Sci., 2018, 153: 95.

[43]

Patel N, Fernandes R, Guella G, Miotello A. Appl. Catal. B Environ., 2010, 95(1/2): 137.

[44]

Wang Y, Meng W, Wang D, Li G, Wu S, Cao Z, Zhang K, Wu C, Liu S. Int. J. Hydrogen Energy, 2017, 42(52): 30718.

[45]

Li C, Wang D, Wang Y, Li G, Hu G, Wu S, Cao Z, Zhang K. J. Colloid Interface Sci., 2018, 524: 25.

[46]

Yin Y, Xiang C, Chu H, Zhang H, Fen X, Yan E, Sun L, Tang C, Zou Y. Appl. Surf. Sci., 2018, 460: 25.

[47]

Wei Y, Wang R, Meng L, Wang Y, Li G, Xin S, Zhao X, Zhang K. Int. J. Hydrogen Energy, 2017, 42(15): 9945.

[48]

Izgi M S, Şahin Ö, Saka C. Int. J. Hydrogen Energy, 201, 41(3): 1600.

[49]

Chang J, Tian H, Du F. Int. J. Hydrogen Energy, 2014, 39(25): 13087.

[50]

Vernekar A A, Bugde S T, Tilve S. Int. J. Hydrogen Energy, 2012, 37: 327.

[51]

Wang Y, Wang D, Zhao C, Meng W, Zhao T, Cao Z, Zhang K, Bai S, Li G. Int. J. Hydrogen Energy, 2019, 44(21): 10508.

[52]

Zhao Y, Ning Z, Tian J, Wang H, Liang X, Nie S, Yu Y, Li X. J. Power Sources, 2012, 207: 120.

[53]

Liang Y, Wang P, Dai H B. J. Alloys Compd., 2010, 491(1/2): 359.

[54]

Loghmani M H, Shojaei A F. Energy, 2014, 68: 152.

[55]

Tian H, Guo Q, Xu D. J. Power Sources, 2010, 195(8): 2136.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/