Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst

Ruihua Guo , Fei Qian , Shengli An , Jieyu Zhang , Kuo-chih Chou , Jinyu Ye , Zhiyou Zhou

Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 686 -695.

PDF
Chemical Research in Chinese Universities ›› 2021, Vol. 37 ›› Issue (3) : 686 -695. DOI: 10.1007/s40242-020-0207-y
Article

Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst

Author information +
History +
PDF

Abstract

In this paper, we describe the synthesis of the AC-PtNi/G catalysts with graphene as the carrier, via the alcohol reduction and the sulfuric acid treatment. The prepared catalysts were microscopically characterized by X-ray diffractometry(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscopy(SEM), electron spectroscopy(EDAX), and transmission electron micros-copy(TEM). We tested the electrochemical performance of the prepared catalysts using an electrochemical workstation and in situ infrared spectroscopy(FTIR). The results showed that the acid-treated AC-PtNi/G catalysts had a more uniform dispersion and with the increased of treatment time, the particle size of the catalyst became smaller. And the electrocatalytic performance of the AC-PtNi/G-48h catalyst treated with sulfuric acid for 48 h was significantly better than that of the untreated PtNi/G catalyst. Its electrochemically active surface area was 76.63 m2/g, and the peak current density value for catalytic oxidation of ethanol was 1218.83 A/g, which was 10 times that of ordinary commercial Pt/C catalyst. The steady-state current density value of 1100 s was 358.77 A/g, and it has excellent anti-CO toxicity performance. It was determined that a sulfuric acid treatment controlled catalyst particle size and increased the electrocatalytic activity of the catalytic oxidation of ethanol.

Keywords

Platinum / Graphene / Acid treatment / Particle size / Electrocatalytic oxidation

Cite this article

Download citation ▾
Ruihua Guo, Fei Qian, Shengli An, Jieyu Zhang, Kuo-chih Chou, Jinyu Ye, Zhiyou Zhou. Effect of Acid Treatment on Electrocatalytic Performance of PtNi Catalyst. Chemical Research in Chinese Universities, 2021, 37(3): 686-695 DOI:10.1007/s40242-020-0207-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen W X, Gui H, Lee J Y, Liu Z Y. Chem. J. Chinese Universities, 2003, 24(12): 2285.

[2]

Akhairi M A F, Kamarudin S K. Int. J. Hydrogen Energy, 201, 41(7): 4214.

[3]

Hameed R M A, Amin R S, E-Khatib K M, Fetohi A E. Appl. Surf. Sci., 201, 367: 382.

[4]

Wang X Y, Jiang Y S. Chem. Res. Chinese Universities, 2011, 27(1): 154.

[5]

Antoniassi R M, Silva J C M, Oliveira Neto A, Spinacé EV. Appl. Catal. B: Environmental, 2017, 218: 91.

[6]

Liu C P, Yang H, Xing W, Lu T H. Chem. J. Chinese Universities, 2002, 23(7): 1367.

[7]

D’Urso C, Bonesi A, Triaca W E, Castro Luna A M, Aricò AS. Int. J. Electrochemical Science, 201, 7(10): 9909.

[8]

Zhou W J, Li W Z, Zhou Z H, Song S Q, Xin Q. Chem. J. Chinese Universities, 2003, 24(5): 858.

[9]

Ishitobi H, Ino Y, Nakagawa N. Int. J. Hydrogen Energy, 2017, 42(43): 26897.

[10]

Wang X Y, Zhang J C, Zhu H. Chinese J. Catal., 2011, 32(1): 74.

[11]

Soares L A, Morais C, Napporn T W. J. Power Sources, 201, 315: 47.

[12]

Medina R A, Ruiz C B, Villica A M, Galindo Esquivel I R, Ramírez-Minguela J J. Appl. Surf. Sci., 2018, 456: 204.

[13]

Linares J J, Zignani S C, Rocha T A, Gonzalez E R. J. Appl. Electrochem., 2013, 43(2): 147.

[14]

Dong H Z, Dong L F. J. Inorg. Organomet. Polym. Materials, 2011, 21(4): 754.

[15]

Ge X B, Chen L Y, Kang J L, Fujita T, Hirata A, Zhang W, Jiang J H, Chen M W. Adv. Funct. Mater., 2013, 23(33): 4156.

[16]

Antoniassi R M, Neto A O, Linardi M, Spinace E V. Int. J. Hydrogen Energy, 2013, 38(27): 12069.

[17]

Vigier F, Coutanceau C, Hahn F, Belgsir E M, Lamy C. J. Electroanal. Chem., 2004, 563(1): 81.

[18]

Neto A O, Verjulio-Silva R W R, Linardi M, Spinacé E V. Ionics, 2010, 16(1): 85.

[19]

De Souza R F B, Parreira L S, Silva J C M, Sirnoes FC, Caegaro M L, Giz M J, Camara G A, Neto A O, Santos M C. Int. J. Hydrogen Energy, 2011, 36(18): 11519.

[20]

Benítez R, Chaparro A M, Daza L. J. Power Sources, 2005, 151: 2.

[21]

Wang XH, Yin SL, Ma G Y, Ruan S D, Ji W J. Mater. Rev., 2015, 14: 11.

[22]

Zhang Z Y, Xin L, Sun K, Li W Z. Int. J. Hydrogen Energy, 2011, 36(20): 12686.

[23]

Manzo-Robledo A, Boucher A C, Pastor E, Alonso-Vante N. Fuel Cells, 2010, 2: 109.

[24]

Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W D, Xie Y. Adv. Mater., 2013, 25(40): 5807.

[25]

Xia C, Jiang Q, Zhao C, Hedhili M N, Alshareef H N. Adv. Mater., 201, 28(1): 77.

[26]

Huang M, Wu W, Wu C, Guan L. J. Mater. Chem. A, 2015, 3(9): 4777.

[27]

Sun S J, Gao Q M. Rare Metals, 2011, 30(1): 42.

[28]

Kim Y M, Park K W, Choi J H, Park I S, Sung Y E. Electrochem. Commun., 2003, 5(7): 571.

[29]

Wang J J, Yin G P, Wang G G, Wang Z B, Gao Y Z. Electrochem. Commun., 2008, 10(6): 831.

[30]

Lee S W, Chen S, Sheng W C, Yabuuchi N, Yang S H. J. Am. Chem. Soc., 2009, 131(43): 15669.

[31]

Kim H, Park J N, Lee W H. Catal. Today, 2003, 87: 237.

[32]

Toda T, Igarashi H, Watanabe M. J. Electroanal. Chem., 1999, 460: 258.

[33]

Park K W, Choi J H, Kwon B K, Lee S A, Sung Y E, Ha H Y, Hong S A, Kim H, Wieckowski A. J. Phys. Chem. B, 2002, 106(8): 1869.

[34]

Seger B, Kamat PV. J. Phys. Chem. C, 2009, 113(19): 7990.

[35]

Sogaard M, Odgaard M, Skou E M. Solid State Ionics, 2001, 145(1): 31.

[36]

Deng Y H, Zhang X Z, Yu K Y, Yan X, Du J Y, Huang H M, Fan C A. Chem. Commun., 201, 52(22): 4183.

[37]

Sun S G, Chen A C, Huang T S, Li J B, Tian Z W. J. Electroanal. Chem., 1992, 340: 213.

[38]

Wang X H, Ji W J, Ruan S D, Cao C, Chen M J. B. Chin. Ceram. Soc., 2015, 34(10): 2786.

[39]

Huang M H, Jiang Y Y, Jin C H, Ren J, Zhou Z Y, Guan L H. Electrochim. Acta, 2014, 125(10): 29.

[40]

Sousa R, Flávio C, Eduardo G C, Ernesto R G. J. Solid State Electrochem., 2007, 11(11): 1549.

[41]

Huang X, Zhao Z, Fan J, Tan Y, Zheng N. J. Am. Chem. Soc., 2011, 133(13): 4718.

[42]

Lai S C S, Kleyn S E F, Rosca V, Koper M T M. J. Phys. Chem. C, 2008, 112(48): 19080.

[43]

Meli G, Leger J M, Lamy C, Durand R. J. Appl. Electrochem., 1993, 23(3): 197.

[44]

Sun Q Z, Kim S. Electrochim. Acta, 2015, 153: 566.

[45]

Ribadeneira E, Hoyos B A. J. Power Sources, 2008, 180(1): 238.

[46]

Zhou Z Y, Shang S J, Tian N, Wu B H, Zheng N F, Xu B B, Chen C, Wang H H, Xiang D M, Sun S G. Electrochem. Commun., 2012, 22: 61.

[47]

Deng Y J, Tian N, Zhou Z Y, Huang R, Liu Z L, Xiao J, Sun S G. Chem. Sci., 2012, 3(4): 1157.

[48]

Leung L W H, Weaver M J. ChemInform, 1988, 19(46): 4019.

[49]

Vigier F, Coutanceau C, Hahn F, Belgsir E M, Lamy C. J. Electroanal. Chem., 2004, 563(1): 81.

[50]

Zhou Z Y, Huang Z Z, Chen D J, Wang Q, Tian N, Sun S G. Angew. Chem. Internat. Ed., 2010, 122(2): 421.

[51]

Del CV, Berná A, Tremiliosi-Filho G, Herrero E, Feliu J M. Phys. Chem. Chem. Phys., 2008, 10: 3766.

[52]

Brooksby P A, Fawcett W R. Anal. Chem., 2001, 73: 1155.

[53]

Liu F Z, Yan M M, Zhou W, Jiang Z Y. Electrochem. Commun., 2003, 5: 276.

[54]

Cheng Y Y, Yu J, Wu Y J. Chinese J. Anal. Chem., 2002, 12: 1426.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/