All-Ti3C2T xMXene Based Flexible On-chip Microsupercapacitor Array

La Li , Di Chen , Guozhen Shen

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 694 -698.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 694 -698. DOI: 10.1007/s40242-020-0197-9
Article

All-Ti3C2T xMXene Based Flexible On-chip Microsupercapacitor Array

Author information +
History +
PDF

Abstract

Flexible on-chip microsupercapacitors(MSCs) are highly desired for integrated wearable or portable electronics due to their advantages of small size, high power density, easy integration, long lifespan, high security, and flexibility. The output voltage of MSCs can be improved by designing MSC arrays, which could further expand their application fields. In this work, we proposed a facile laser direct cutting method to prepare an on-chip flexible MSC array using Ti3C2T xMXene as both current collector and electrode materials. The designed MSC in PVA/H2SO4 all-solid-state gel electrolyte exhibits a large volume/areal capacitance of 770.72 F/cm3(46.24 mF/cm2) at a scan rate of 20 mV/s, a high energy density of 68.51 mW·h/cm3 at a power density of 6.16 W/cm3, excellent cycling stability with capacitance retention of 98.50% after 10000 charge/discharge cycles. The MSC also shows superior flexibility and stability even after repetition of charge/discharge cycles under the convex and concave bending states. In addition, the assembled MSC array(4 in series) provides a high voltage of 3.2 V, which could easily power a purple light-emitting diode more than 10 min, demonstrating its potential application in integrated portable/wearable devices.

Keywords

Ti3C2T x / MXene / Microsupercapacitor / Laser cutting / Flexible energy storage

Cite this article

Download citation ▾
La Li, Di Chen, Guozhen Shen. All-Ti3C2T xMXene Based Flexible On-chip Microsupercapacitor Array. Chemical Research in Chinese Universities, 2020, 36(4): 694-698 DOI:10.1007/s40242-020-0197-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li L, Lou Z, Chen D, Jiang K, Han W, Shen G. Small, 2018, 14(43): e1702829.

[2]

Xiong G, Meng C, Reifenberger R G, Irazoqui P P, Fisher T S. Electroanalysis, 2014, 26(1): 30.

[3]

Wu H, Jiang K, Gu S, Yang H, Lou Z, Chen D, Shen G. Nano Research, 2015, 8(11): 3544.

[4]

Gao Z, Yang W L, Wang J, Song N N, Li X D. Nano Energy, 2015, 13: 306.

[5]

Chen Y-C, Hsu Y-K, Lin Y-G, Lin Y-K, Horng Y-Y, Chen L-C, Chen K-H. Electrochimica Acta, 2011, 56(20): 7124.

[6]

Li L, Lou Z, Han W, Chen D, Jiang K, Shen G. Advanced Materials Technologies, 2017, 2(3): 1600282.

[7]

Han J, Lin Y-C, Chen L, Tsai Y-C, Ito Y, Guo X, Hirata A, Fujita T, Esashi M, Gessner T, Chen M. Advanced Science, 2015, 2(5): 1500067.

[8]

Huang X, Liu H, Zhang X, Jiang H. ACS Applied Materials Interface, 2015, 7(50): 27845.

[9]

Huang P, Pech D, Lin R, McDonough J K, Brunet M, Taberna P-L, Gogotsi Y, Simon P. Electrochemistry Communications, 2013, 36: 53.

[10]

Kim D, Yun J, Lee G, Ha J S. Nanoscale, 2014, 6(20): 12034.

[11]

Kumar V, Park S, Parida K, Bhavanasi V, Lee P S. Materials Today Energy, 2017, 4: 41.

[12]

Li L, Lou Z, Chen D, Han W, Shen G. Advanced Materials Technologies, 2018, 3(8): 1800115.

[13]

Li L, Fu X Y, Chen S, Uzun S, Levitt A S, Shuck C E, Han W, Gogotsi Y. ACS Applied Materials Interface, 2020, 12(13): 15362.

[14]

Anasori B, Lukatskaya M R, Gogotsi Y. Nature Reviews Materials, 2017, 2(2): 1.

[15]

Ng V M H, Huang H, Zhou K, Lee P S, Que W, Xu J Z, Kong L B. Journal of Materials Chemistry A, 2017, 5(7): 3039.

[16]

Sun Y, Chen D, Liang Z. Materials Today Energy, 2017, 5: 22.

[17]

Levitt A, Hegh D, Phillips P, Uzun S, Anayee M, Razal J M, Gogotsi Y, Dion G. Mater. Today, 2020, 34: 17.

[18]

Zhao M Q, Xie X, Ren C E, Makaryan T, Anasori B, Wang G, Gogotsi Y. Advanced Materials, 2017, 29(37): 1702410.

[19]

Si W, Yan C, Chen Y, Oswald S, Han L, Schmidt O G. Energy & Environmental Science, 2013, 6(11): 3218.

[20]

Ervin M H, Le L T, Lee W Y. Electrochimica Acta, 2014, 147: 610.

[21]

Hsia B, Marschewski J, Wang S, In J B, Carraro C, Poulikakos D, Grigoropoulos C P, Maboudian R. Nanotechnology, 2014, 25(5): 055401.

[22]

Kaempgen M, Chan C K, Ma J, Cui Y, Gruner G. Nano Letters, 2009, 9(5): 1872.

[23]

Kim H, Yoon J, Lee G, Paik S H, Choi G, Kim D, Kim B M, Zi G, Ha J S. ACS Applied Materials Interfaces, 201, 8(25): 16016.

[24]

Niu Z, Zhang L, Liu L, Zhu B, Dong H, Chen X. Advanced Materials, 2013, 25(29): 4035.

[25]

El-Kady M F, Kaner R B. Nature Communications, 2013, 4: 1475.

[26]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chemistry of Materials, 2017, 29(18): 7633.

[27]

Wu H, Lou Z, Yang H, Shen G. Nanoscale, 2015, 7(5): 1921.

[28]

Anasori B, Shi C Y, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y. Nanoscale Horiz, 201, 1(3): 227.

[29]

Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

[30]

Peng Y-Y, Akuzum B, Kurra N, Zhao M-Q, Alhabeb M, Anasori B, Kumbur E C, Alshareef H N, Ger M-D, Gogotsi Y. Energy Environ Sci., 201, 9(9): 2847.

[31]

Li L, Lou Z, Han W, Shen G. Nanoscale, 201, 8(32): 14986.

[32]

Gu S, Lou Z, Li L, Chen Z, Ma X, Shen G. Nano Research, 2015, 9(2): 424.

[33]

Moon Y S, Kim D, Lee G, Hong S Y, Kim K K, Park S M, Ha J S. Carbon, 2015, 81: 29.

[34]

Yun J, Kim D, Lee G, Ha J S. Carbon, 2014, 79: 156.

[35]

Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R, Ajayan P M. Small, 2013, 9(17): 2905.

[36]

Li L, Fu C, Lou Z, Chen S, Han W, Jiang K, Chen D, Shen G. Nano Energy, 2017, 41: 261.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/