Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam Production

Aijing Ma , Yaxi Chen , Yang Liu , Jianzhou Gui , Yifu Yu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 699 -702.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 699 -702. DOI: 10.1007/s40242-020-0195-y
Article

Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam Production

Author information +
History +
PDF

Abstract

Solar-thermal water evaporation has attracted increasing attention owing to the promising potential to solve the global clean water and energy crisis. But, the development of this strategy is limited by the lack of materials with high solar-thermal conversion efficiency, local heating of superficial water, easy preparation and low cost. Herein, we proposed a facile strategy to prepare a reduced graphene oxide/carbon fiber composite membrane, denoted as RGO/CF membrane. The surface of the RGO/CF membrane was highly hydrophobic, endowing the composite membrane with the self-floating ability on the water without any assistance. The light absorbance ability achieved as high as ca. 98% in the wavelength range of 300–1200 nm. The steam evaporation efficiency under the illumination of 3-sun was 97%, generating water steam at a rate of 4.54 kg·m−2·h−1. Moreover, the solar-thermal steam production rate showed high stability during successive 30 cycle tests.

Keywords

Composite membrane / Reduced graphene oxide / Carbon fiber / Self-floating / Solar steam generation

Cite this article

Download citation ▾
Aijing Ma, Yaxi Chen, Yang Liu, Jianzhou Gui, Yifu Yu. Reduced Graphene Oxide/Carbon Fiber Composite Membrane for Self-floating Solar-thermal Steam Production. Chemical Research in Chinese Universities, 2020, 36(4): 699-702 DOI:10.1007/s40242-020-0195-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoekstra A Y. Nat. Clim. Change, 2014, 4(5): 318.

[2]

Jian J, Yuan L, Li H, Liu H H, Zhang X H, Sun X J, Yuan H M, Feng S H. Chem. Res. Chinese Universities, 2019, 35(2): 179.

[3]

Pan T, Yang K, Han Y. Chem. Res. Chinese Universities, 2020, 36(1): 33.

[4]

Schnoor J L. Environ. Sci. Technol., 2011, 45(12): 5065.

[5]

Yang C, Wang H, Xu Q. Chem. Res. Chinese Universities, 2020, 36(1): 10.

[6]

Zhu Y, Shu L, Fan Z. Chem. Res. Chinese Universities, 2020, 36(3): 366.

[7]

Wang Y T, Yu Y F, Jia R R, Zhang C, Zhang B. Natl. Sci. Rev., 2019, 6: 730.

[8]

Xiao G, Wang X H, Ni M J, Wang F, Zhu W J, Luo Z Y, Cen K F. Appl. Energy, 2013, 103: 642.

[9]

Dao V D, Choi H S. Global Challenges, 2018, 2: 1700094.

[10]

Wu X, Wu L, Tan J, Chen G Y, Owens G, Xu H. J. Mater. Chem. A, 2018, 6: 12267.

[11]

Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J, Gan Q, Yu Z, Zhu J. Sci. Adv., 201, 2(4): e1501227.

[12]

Jin H, Lin G, Bai L, Zeiny A, Wen D. Nano Energy, 201, 28: 397.

[13]

Wang J, Li Y, Deng L, Wei N, Weng Y, Dong S, Qi D, Qiu J, Chen X, Wu T. Adv. Mater., 2017, 29(3): 1603730.

[14]

Ye M, Jia J, Wu Z, Qian C, Chen R, O’Brien P G, Sun W, Dong Y, Ozin G A. Adv. Energy Mater., 2017, 7(4): 1601811.

[15]

Kaur M, Ishii S, Shinde S L, Nagao T. ACS Sustainable Chem. Eng., 2017, 5: 8523.

[16]

Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G. Nat. Commun., 2014, 5: 4449.

[17]

Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Nano Energy, 2017, 41: 201.

[18]

Yin Z, Wang H M, Jian M Q, Li Y S, Xia K L, Zhang M C, Wang C Y, Wang Q, Ma M, Zheng Q S, Zhang Y Y. ACS Appl. Mater. Interfaces, 2017, 9(34): 28596.

[19]

Yang J L, Pang Y S, Huang W X, Shaw S K, Schiffbauer J, Pillers M A, Mu X, Luo S R, Zhang T, Huang Y J, Li G X, Ptasinska S, Lieberman M, Luo T F. ACS Nano, 2017, 11: 5510.

[20]

Wang Q, Hisatomi T, Jia Q X, Tokudome H, Zhong M, Wang C Z, Pan Z H, Takata T, Nakabayashi M, Shibata N, Li Y B, Sharp I D, Kudo A, Yamada T, Domen K. Nat. Mater., 201, 15: 611.

[21]

Li Y, Gao T, Yang Z, Chen C, Kuang Y, Song J, Jia C, Hitz E M, Yang B, Hu L. Nano Energy, 2017, 41: 201.

[22]

Zhang L, Tang B, Wu J, Li R, Wang P. Adv. Mater., 2015, 27(33): 4889.

[23]

Chen Y X, Shi Y M, Hui K, Liu D L, Huang Y, Chen Z G, Zhang B. ACS Sustainable Chem. Eng., 2019, 7: 2911.

[24]

Hummers W S Jr., Offeman R E. J Am. Chem. Soc., 1958, 80: 1339.

[25]

Wang Y L, Liu H, Chen C J, Kuang Y D, Song J W, Xie H, Jia C, Kronthal S, Xu X, He S M, Hu L B. Adv. Sustain. Sys., 2019, 3: 1800055.

[26]

Chen C J, Li Y J, Song J W, Yang Z, Kuang Y D, Hitz E, Jia C, Gong A, Jiang F, Zhu J Y, Yang B, Xie J, Hu L B. Adv. Mater., 2017, 29(30): 1701756.

[27]

Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, Zhu J. Adv. Mater., 2017, 29(5): 1604031.

[28]

Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M. Adv. Mater., 2015, 29(30): 4302.

[29]

Jiang Q, Tian L, Liu K K, Tadepalli S, Raliya R, Biswas P, Naik R R, Singamaneni S. Adv. Mater., 201, 28(42): 9400.

[30]

Li Y J, Gao T T, Yang Z, Chen C J, Luo W, Song J W, Hitz E, Jia C, Zhou Y B, Liu B Y, Yang B, Hu L B. Adv. Mater., 2017, 29(26): 1700981.

[31]

Chen W, Wang T, Xue J, Li S, Wang Z, Sun S. Small, 2017, 13(10): 1602420.

[32]

Zhang L, Tang B, Wu J, Li R, Wang P. Adv. Mater., 2015, 27(33): 4889.

[33]

Zhu M M, Li Y J, Chen G, Jiang F, Yang Z, Luo X G, Wang Y B, Lacey S D, Dai J Q, Wang C W, Jia C, Wan J Y, Yao Y G, Gong A, Yang B, Yu Z F, Das S, Hu L B. Adv. Mater., 2017, 29(44): 1704107.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/