Effects of Different Eelectron-withdrawing Moieties on the General Photoelectric Properties of Fluorene-based Dimers

Xinlei Yuan , Jie Li , Zhiwei Lu , Shanghui Ye , Hongji Jiang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1174 -1182.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1174 -1182. DOI: 10.1007/s40242-020-0191-2
Article

Effects of Different Eelectron-withdrawing Moieties on the General Photoelectric Properties of Fluorene-based Dimers

Author information +
History +
PDF

Abstract

Here, 9,9,9′-tris(4-butoxyphenyl)-9H-9′H-2,2′-difluorene(DF) was synthesized as a reference for comparison, and diphenyl sulfone and triphenylphosphine oxygen were introduced to the 9-position of fluorene through a C-H coupling reaction to produce two fluorene-based oligomers 9′,9′″-[sulfonylbis(4,1-phenylene)]bis[9,9,9′-tris-(4-butoxyphenyl)-9H,9′H-2,2′-bifluorene](DF)2SO2 and phenylbis(4-{9,9′,9′-tris(4-butoxyphenyl)-9H,9′H-[2,2′-bifluorene]-9-yl}phenyl)phosphine oxide[(DF)2PO]. Solid powders of all the three compounds exhibit excellent thermal stability with thermal temperature at 5% mass loss of 375, 429 and 383 °C for (DF)2SO2, (DF)2PO and DF. In addition, owing to the distorted molecular structure and weak electron-absorbing ability of the acceptor, (DF)2SO2 and (DF)2PO do not have obvious intramolecular charge transfer characteristics, and exhibit stable localized 394 nm/375 nm fluorescence emission peaks in different polar solvents. The absolute luminescence quantum efficiencies of (DF)2SO2, (DF)2PO and DF solid powders are 20.83%, 10.03% and 59.46%. Compound DF has the highest quantum yield as an electron donor. The chromaticity coordinates of the blue OLED devices based on DF and DF2SO2 fabricated by solution spin coating were (0.19, 0.10) and (0.19, 0.11), which were closest to the deep blue region, and the corresponding maximum external quantum efficiencies are 1.45% and 0.87%, respectively, which are higher than that of (DF)2PO(0.25%) and consistent with the difference in the solid-state quantum efficiency between them.

Keywords

Organic light emitting-diode / Electron-withdrawing moiety / Fluorene / Diphenyl sulfone / Triphenylphosphine oxide

Cite this article

Download citation ▾
Xinlei Yuan, Jie Li, Zhiwei Lu, Shanghui Ye, Hongji Jiang. Effects of Different Eelectron-withdrawing Moieties on the General Photoelectric Properties of Fluorene-based Dimers. Chemical Research in Chinese Universities, 2020, 36(6): 1174-1182 DOI:10.1007/s40242-020-0191-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldo M A, O’Brien D F, Forrest S R. Phys. Rev. B, 1999, 60: 14422.

[2]

Tang C W, Vanslyke S A. Appl. Phys. Lett., 1987, 51: 913.

[3]

Baldo M A, O’Brien D F, You Y J, Shoustikov A. Nature, 1998, 395: 151.

[4]

Sasabe H, Kido J. Eur. J. Org. Chem., 2013, 2013: 7653.

[5]

Minaev B, Baryshnikov G, Agren H. Phys. Chem. Chem. Phys., 2014, 16: 1719.

[6]

Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv. Mater., 2009, 21: 4802.

[7]

Zhu M R, Yang C L. Chem. Soc. Rev., 2013, 42: 4963.

[8]

Lin M S, Chi L C, Chang H W, Huang Y H, Chi Y A. J. Mater. Chem., 2011, 22: 870.

[9]

Tan J H, Huo Y P, Cai N, Ji S M, Li Z Z, Zhang L. Chin. J. Org. Chem., 2017, 37: 2457.

[10]

Jiang H J. Macromol. Rapid Commun., 2010, 31: 2007.

[11]

Wei L J, Li J, Xue K, Ye S H, Jiang H J. New J. Chem., 2019, 43: 16629.

[12]

Gong S, Jiang J, Yang C. Chem. Eur. J., 201, 22: 10860.

[13]

Xiang Y, Gong S, Zhao Y, Yin X, Luo J, Wu K, Lu Z, Yang C. J. Mater. Chem. C, 201, 4: 9998.

[14]

Lee J, Shizu K, Tanaka H, Nakanotani H, Yasuda T, Kaji H, Adachi C. J. Mater. Chem. C, 2015, 3: 2175.

[15]

Duan C, Li J, Han C, Ding D, Yang H, Wei Y, Xu H. Chem. Mater., 201, 28: 5667.

[16]

Liu M, Seino Y, Chen D, Chen D, Inomata S, Kido J. Chem. Commun., 2015, 51: 16353.

[17]

Zhang Q, Kuwabara H, Potscavage W J, Huang S, Hatae Y, Shibata T, Adachi C. J. Am. Chem. Soc., 2014, 136: 18070.

[18]

Hirai H, Nakajima K, Nakatsuka S, Shiren K, Ni J, Nomura S, Ikuta T, Hatakeyama T. Angew. Chem. Int. Ed., 2015, 54: 13581.

[19]

Li J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Appl. Phys. Lett., 2014, 105: 1.

[20]

Li J, Nakagawa T, Macdonald J, Zhang Q, Nomura H, Miyazaki H, Adachi C. Adv. Mater., 2013, 25: 3319.

[21]

Suzuki K, Kubo S, Shizu K, Fukushima T, Wakamiya A, Murata Y, Adachi C, Kaji H. Angew. Chem. Int. Ed., 2015, 54: 15231.

[22]

Lee S Y, Yasuda T, Park I S, Adachi C. J. Chem. Soc. Dalton. Trans., 2015, 44: 8356.

[23]

Wu T L, Liao S Y, Huang P Y, Hong Z S, Huang M P, Lin C C, Cheng M J, Cheng C H. ACSAppl. Mater. Inter., 2019, 11: 19294.

[24]

Krishnamoorthy T, Ding H, Yan C, Leong W, Baikie T, Zhang Z, Sherburne M, Li S, Asta M, Mathews N, Mhaisalkar S G. J. Mater. Chem. A, 2015, 3: 23829.

[25]

Omer K M, Ku S Y, Wong K T, Bard A J. Angew. Chem. Int. Ed., 2009, 121: 9464.

[26]

Wu C H, Shih P I, Shu C F, Chi Y. Appl. Phys. Lett., 2008, 92: 233303.

[27]

Chien C H, Hsu F M, Shu C F, Chi Y. Org. Electron., 2009, 10: 871.

[28]

Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234.

[29]

Kim O Y, Kim B S, Lee J Y. Synth. Met., 2015, 201: 49.

[30]

Sun M L, Zhu W S, Zhang Z S, Qu C J, Xie L H, Yang Y, Qian Y, Zhao Y, Huang W. J. Mater. Chem. C, 2015, 3: 94.

[31]

Liu F, Xie L H, Tang C, Liang J, Chen Q Q, Peng B, Wei W, Cao Y, Huang W. Org. Lett., 2009, 11: 3850.

[32]

Poriel C, Sicard L, Joëlle R-B. Chem. Commun., 2019, 55: 14238.

[33]

Tseng Y H, Shih P I, Chien C H, Dixit A K, Shu C F, Liu Y H, Lee G H. Macromolecules, 2005, 38: 10055.

[34]

Xin Y, Wen G A, Zeng W J, Zhao L, Zhu X R, Fan Q L, Feng J C, Wang L H, Peng B, Cao Y. Macromolecules, 2005, 38: 6755.

[35]

Bernius M, Inbasekaran M, Woo E, Wu W, Wujkowski L. J. Mater. Sci. Mater. Electron., 2000, 11: 111.

[36]

Bai K, Wang S, Zhao L, Ding J, Wang L. Macromolecules, 2017, 50: 6945.

[37]

Wong K T, Chien Y Y, Chen R T, Wang C F, Lin Y T, Chiang H H, Hsieh P Y, Wu C C, Chou C H, Su Y O, Lee G H, Peng S M. J. Am. Chem. Soc., 2002, 124: 11576.

[38]

Wong K T, Chen R T, Fang F C, Wu C C, Lin Y T. Org. Lett., 2005, 7: 5925.

[39]

Tao S, Zhou Y, Lee C S, Zhang X, Lee S T. Chem. Mater., 2010, 22: 2138.

[40]

Wu F I, Reddy D S, Shu C F, Liu M S, Jen K Y. Chem. Mater, 2003, 15: 269.

[41]

Grisorio R, Allegretta G, Mastrorilli P, Suranna G P. Macromolecules, 2011, 44: 7977.

[42]

Hu X D, Wang S H, Hou Z X, Wang M H, Wang N. Adv. Mater. Res., 2015, 1089: 20.

[43]

He X, Xiao Y P, Yuan X L, Ye S H, Jiang H J. Chin. J. Org. Chem., 2019, 37: 761.

[44]

Cao X, Yang W, Liu C, Wei F L, Wu K, Sun W, Song J, Xie L H, Huang W. Org. Lett, 2013, 15: 3102.

[45]

Jiang H J, He X, Li X. Chin. J. Org. Chem., 2020, 40: 763.

[46]

An Z F, Chen R F, Yin J, Xie G H, Shi H F, Tsuboi T, Huang W. Chem. Eur. J., 2011, 17: 10871.

[47]

Tanaka H, Shizu K, Miyazaki H, Adachi C. Chem. Commun., 2012, 48: 11392.

[48]

Ishiyama T, Murata M, Miyaura N. J. Org. Chem., 1995, 60: 7508.

[49]

Jiang H J, Zhang Q W, He X, Zhang X L, Zhang X W. Chin. J. Polym. Sci., 2017, 35: 611.

[50]

Jou J H, Li J L, Sahoo S, Dubey D K, Yadav R A K, Joseph V, Cheng C H. J. Phys. Chem. C, 2018, 122: 24295.

[51]

Bulovic V, Deshpande R, Thompson M E, Forrest S R. Chem. Phys. Lett., 1999, 308: 317.

[52]

Li W, Liu D, Shen F, Ma D, Wang Z, Feng T, Xu Y, Yang B, Ma Y. Adv. Funct. Mater., 2012, 22: 2797.

[53]

Zong L, Xie Y, Wang C, Li J R, Li Q, Li Z. Chem. Commun., 201, 52: 11496.

[54]

Mei J, Hong Y, Jacky W Y L, Qin A, Tang Y, Tang B Z. Adv. Mater., 2014, 26: 5429.

[55]

Liu Y, Wang Y, Li C, Ren Z, Ma D, Yan S. Macromolecules, 2018, 51: 4615.

[56]

Zhao B, Zhang T, Chu B, Li W, Su Z, Luo Y, Li R, Yan X, Jin F, Gao Y, Wu H. Org. Electron, 2015, 17: 15.

[57]

Wang Q, Tian Q S, Zhang Y L, Tang X, Liao L S. J. Mater. Chem. C, 2019, 7: 11329.

[58]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Vreven J, Kudin T K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, AlLaham M A, Peng C Y, Nanayakkar A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian 09, Revision A02, 2009, Wallingford CT: Gaussian Inc.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/