Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction

Jia Lei , Mengqi Zeng , Lei Fu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 504 -510.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 504 -510. DOI: 10.1007/s40242-020-0190-3
Review

Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction

Author information +
History +
PDF

Abstract

Oxygen evolution reaction(OER) plays an important role in many electrochemical systems. However, its sluggish kinetics severely limits the development of next-generation energy technologies. Recently, two-dimensional(2D) metal-organic frameworks(MOFs) have attracted much attention as a class of promising electrocatalysts. Their diverse components and tunable structures provide a new platform to design and explore ideal electrocatalysts. The ultrathin characteristics including high specific surface area, abundant exposed metal sites and fast electronic transfer further promote the electrocatalytic performance of 2D MOFs. Therefore, many attempts have been made in synthesizing 2D MOF-based electrocatalysts in recent years. This review focuses on the strategies to fabricate 2D MOFs with high electrocatalytic performances for OER. The discussion on challenge and development of their electrocatalytic application is also presented.

Keywords

Two-dimensional / Metal-organic framework / Oxygen evolution reaction(OER) / Electrocatalysis

Cite this article

Download citation ▾
Jia Lei, Mengqi Zeng, Lei Fu. Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36(4): 504-510 DOI:10.1007/s40242-020-0190-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

[2]

Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

[3]

Wang Q, Astruc D. Chem. Rev., 2020, 120(2): 1438.

[4]

Zhu D, Qiao M, Liu J, Tao T, Guo C. J. Mater. Chem. A, 2020, 8(17): 8143.

[5]

Lu X F, Xia B Y, Zang S Q, Lou X W D. Angew. Chem. Int. Ed., 2020, 59(12): 4634.

[6]

Jayaramulu K, Masa J, Morales D M, Tomanec O, Ranc V, Petr M, Wilde P, Chen Y T, Zboril R, Schuhmann W, Fischer R A. Adv. Sci., 2018, 5(11): 1801029.

[7]

Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. Science, 201, 353(6303): 1011.

[8]

Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L, Xu J, Liu M, Zheng L, de Arquer F P G, Dinh C T, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, Luna P D, Janmohamed A, Xin H L, Yang H, Vojvodic A, Sargent E H. Science, 201, 352(6283): 333.

[9]

Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

[10]

Qiao H, Yong J, Dai X, Zhang X, Ma Y, Liu M, Luan X, Cai J, Yang Y, Zhao H, Huang X. J. Mater. Chem. A, 2017, 5(40): 21320.

[11]

Zhao K, Zhu W, Liu S, Wei X, Ye G, Su Y, He Z. Nanoscale Adv., 2020, 2(2): 536.

[12]

Zhao S, Wang Y, Dong J, He C T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak A M, Khan N A, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nature Energy, 201, 1(12): 16184.

[13]

Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking R K, Li M, Zhang L, Wang X, Yao X, Zhu Z. Angew. Chem. Int. Ed., 2019, 58(38): 13565.

[14]

Wang J, Li N, Xu Y, Pang H. Chem. Eur. J., 2020, 26(29): 1.

[15]

Zhong H, Ly K H, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Buchner B, Weidinger I M, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew. Chem. Int. Ed., 2019, 58(31): 10677.

[16]

Zou Z, Wang T, Zhao X, Jiang W J, Pan H, Gao D, Xu C. ACS Catal., 2019, 9(8): 7356.

[17]

Guo C, Jiao Y, Zheng Y, Luo J, Davey K, Qiao S Z. Chem., 2019, 5(9): 2429.

[18]

Wei X, Li N, Liu N. Electrochim. Acta, 2019, 318: 957.

[19]

Zhang W, Wang Y, Zheng H, Li R, Tang Y, Li B, Zhu C, You L, Gao M R, Liu Z, Yu S H, Zhou K. ACS Nano, 2020, 14(2): 1971.

[20]

Zha Q, Yuan F, Qin G, Ni Y. Inorg. Chem., 2020, 59(2): 1295.

[21]

Chi Y, Yang W, Xing Y, Li Y, Pang H, Xu Q. Nanoscale, 2020, 12(19): 10685.

[22]

Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346(6215): 1356.

[23]

Pang W, Shao B, Tan X Q, Tang C, Zhang Z, Huang J. Nanoscale, 2020, 12(6): 3623.

[24]

Zhang H. ACS Nano, 2015, 9(10): 9451.

[25]

Huang J, Li Y, Huang R K, He C T, Gong L, Hu Q, Wang L, Xu Y T, Tian X Y, Liu S Y, Ye Z M, Wang F, Zhou D D, Zhang W X, Zhang J P. Angew. Chem. Int. Ed., 2018, 57(17): 4632.

[26]

Li Y, Huang J, Mo Z W, Zhang X W, Cheng X N, Gong L, Zhou D D, Zhang J P. Sci. Bull., 2019, 64(14): 964.

[27]

Li F L, Wang P, Huang X, Young D J, Wang H F, Braunstein P, Lang J P. Angew. Chem. Int. Ed., 2019, 58(21): 7051.

[28]

Xu Y, Li B, Zheng S, Wu P, Zhan J, Xue H, Xu Q, Pang H. J. Mater. Chem. A, 2018, 6(44): 22070.

[29]

Lu M, Li Y, He P, Cong J, Chen D, Wang J, Wu Y, Xu H, Gao J, Yao J. J. Solid State Chem., 2019, 272: 32.

[30]

Li X, Ma D D, Cao C, Zou R, Xu Q, Wu X T, Zhu Q L. Small, 2019, 15(35): e1902218.

[31]

Wan Z, Yang D, Chen J, Tian J, Isimjan T T, Yang X. ACS Appl. Nano Mater., 2019, 2(10): 6334.

[32]

Zhou W, Huang D D, Wu Y P, Zhao J, Wu T, Zhang J, Li D S, Sun C, Feng P, Bu X. Angew. Chem. Int. Ed., 2019, 58(13): 4227.

[33]

Duan J, Chen S, Zhao C. Nat. Commun., 2017, 8: 15341.

[34]

Huang L, Gao G, Zhang H, Chen J, Fang Y, Dong S. Nano Energy, 2020, 68: 104296.

[35]

Zhang X, Liu Q, Shi X, Asiri A M, Sun X. Inorg. Chem. Front., 2018, 5(6): 1405.

[36]

Zheng X, Song X, Wang X, Zhang Z, Sun Z, Guo Y. New J. Chem., 2018, 42(11): 8346.

[37]

Liu Q, Xie L, Shi X, Du G, Asiri A M, Luo Y, Sun X. Inorg. Chem. Front., 2018, 5(7): 1570.

[38]

Ding M, Chen J, Jiang M, Zhang X, Wang G. J. Mater. Chem. A, 2019, 7(23): 14163.

[39]

Li D J, Li Q H, Gu Z G, Zhang J. J. Mater. Chem. A, 2019, 7(31): 18519.

[40]

Xie M, Ma Y, Lin D, Xu C, Xie F, Zeng W. Nanoscale, 2020, 12(1): 67.

[41]

Huang Z F, Song J, Du Y, Xi S, Dou S, Nsanzimana J M V, Wang C, Xu Z J, Wang X. Nature Energy, 2019, 4(4): 329.

[42]

Wang X L, Dong L Z, Qiao M, Tang Y J, Liu J, Li Y, Li S L, Su J X, Lan Y Q. Angew. Chem. Int. Ed., 2018, 57(31): 9660.

[43]

Han X, Zhang W, Ma X, Zhong C, Zhao N, Hu W, Deng Y. Adv. Mater., 2019, 37(18): e1808281.

[44]

Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. Adv. Energy Mater., 2018, 8(21): 1800584.

[45]

Xia Z, Fang J, Zhang X, Fan L, Barlow A J, Lin T, Wang S, Wallace G G, Sun G, Wang X. Appl. Cata. B: Environ., 2019, 245: 389.

[46]

Ye B, Jiang R, Yu Z, Hou Y, Huang J, Zhang B, Huang Y, Zhang Y, Zhang R. J. Catal., 2019, 380: 307.

[47]

Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou S X. Adv. Funct. Mater., 2018, 28(26): 1801554.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/