Growth of Single-crystalline Transition Metal Dichalcogenides Monolayers with Large-size

Shengxue Zhou , Liying Jiao

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 511 -517.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 511 -517. DOI: 10.1007/s40242-020-0188-x
Review

Growth of Single-crystalline Transition Metal Dichalcogenides Monolayers with Large-size

Author information +
History +
PDF

Abstract

Two-dimensional(2D) transition metal dichalcogenides(TMDCs) semiconductors, such as monolayers of molybdenum disulfide(MoS2) and tungsten disulfide(WS2) can potentially serve as ultrathin channel materials for building short channel field-effect transistors(FETs) to further extend Moore’s Law. It is essential to develop control-lable approaches for the synthesis of large single crystals of these 2D semiconductors to promote their practical applications in future electronics. In this short review, we summarized the recent advances on the chemical vapor deposition(CVD) of single crystalline semiconducting 2D TMDCs with a large size. We first discussed the driving force and urgent demands on developing controllable approaches for the growth of large 2D TMDCs single crystals and then summarized the current strategies and representative studies on the CVD growth of large 2D single crystals. Finally, we discussed the challenges and future directions in this topic.

Keywords

Two dimensional / Single crystal / Chemical vapor deposition / Field effect transistor

Cite this article

Download citation ▾
Shengxue Zhou, Liying Jiao. Growth of Single-crystalline Transition Metal Dichalcogenides Monolayers with Large-size. Chemical Research in Chinese Universities, 2020, 36(4): 511-517 DOI:10.1007/s40242-020-0188-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cooke Y E. Engineering Science & Education Journal, 1998, 7: 100.

[2]

Lundstrom M. Science, 2003, 299: 210.

[3]

Ghetti A. Microelectron Eng., 2001, 59: 127.

[4]

Yang P L, Hook T B, Oldiges P J, Doris B B. IEEE Trans. Electron Devices, 201, 63: 3327.

[5]

Auth C., Allen C., Blattner A., Bergstrom D., Brazier M., Bost M., Buehler M., Chikarmane V., Ghani T., Glassman T., 2012 Symposium on VLSI Technology(VLSLT), 2012, 131

[6]

Mak K F, Shan J. Nat. Photonics, 201, 10: 216.

[7]

Voiry D, Mohite A, Chhowalla M. Chem. Soc. Rev., 2015, 44: 2702.

[8]

Wilson J A, Yoffe A. Adv. Phys., 1969, 18: 193.

[9]

Yoffe A D. Adv. Phys., 1993, 42: 173.

[10]

Ling X, Lin Y, Ma Q, Wang Z, Song Y, Yu L, Huang S, Fang W, Zhang X, Hsu A L, Bie Y, Lee Y H, Zhu Y, Wu L, Li J, Jarillo-Herrero P, Dresselhaus M, Palacios T, Kong J. Adv. Mater., 201, 28: 2322.

[11]

Theis T N, Wong H S P. Comput. Sci. Eng., 2017, 19: 41.

[12]

Pop E. Nano Res., 2010, 3: 147.

[13]

Saha P, Banerjee P, Dash D K, Sarkar S K. J. Mater. Eng. Perform., 2018, 27: 2708.

[14]

Wolf S. Sunset Beach, CA, 1990, 11290: 321.

[15]

Wang J, Zheng H, Xu G, Sun L, Hu D, Lu Z, Liu L, Zheng J, Tao C, Jiao L. J. Am. Chem. Soc., 201, 138: 16216.

[16]

Li L J, Lu W J, Liu Y, Qu Z, Ling L S, Sun Y P. Physica C, 2013, 492: 64.

[17]

Valla T, Fedorov A, Johnson P, Glans P, Mcguinness C, Smith K, Andrei E, Berger H. Phys. Rev. Lett., 2004, 92: 086401.

[18]

Tissen V, Osorio M, Brison J P, Nemes N, García-Hernández M, Cario L, Rodiere P, Vieira S, Suderow H. Phys. Rev. B, 2013, 87: 134502.

[19]

Voiry D, Goswami A, Kappera R, Silva C, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Nat. Chem., 2015, 7: 45.

[20]

Zheng J, Yan X, Lu Z, Qiu H, Xu G, Zhou X, Wang P, Pan X, Liu K, Jiao L. Adv. Mater., 2017, 29: 1604540.

[21]

Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L, Jiao L. Nat. Mater., 2018, 17: 1108.

[22]

Ye G, Gong Y, Lin J, Li B, He Y, Pantelides S T, Zhou W, Vajtai R, Ajayan P M. Nano Lett., 201, 16: 1097.

[23]

Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol, 2012, 7: 699.

[24]

Geim A K, Grigorieva I V. Nature, 2013, 499: 419.

[25]

Miro P, Audiffred M, Heine T. Chem. Soc. Rev., 2014, 43: 6537.

[26]

Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. Nat. Rev. Mater., 2017, 2: 17033.

[27]

Hu D, Zhao T, Ping X, Zheng H, Xing L, Liu X, Zheng J, Sun L, Gu L, Tao C, Wang D, Jiao L. Angew. Chem. Int. Ed. Engl., 2019, 58: 6977.

[28]

Jariwala D, Sangwan V K, Late D J, Johns J E, Dravid V P, Marks T J, Lauhon L J, Hersam M C. Appl. Phys. Lett., 2013, 102: 173107.

[29]

Huang J K, Pu J, Hsu C L, Chiu M H, Juang Z Y, Chang Y H, Chang W H, Iwasa Y, Takenobu T, Li L J. ACS Nano, 2014, 8: 923.

[30]

Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z, Ringe E, Tay B K, Ajayan P M. ACS Nano, 2014, 8: 5125.

[31]

Ovchinnikov D, Allain A, Huang Y S, Dumcenco D, Kis A. ACS Nano, 2014, 8: 8174.

[32]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nat. Nanotechnol, 2011, 6: 147.

[33]

Liu X, Hu J, Yue C, Della Fera N, Ling Y, Mao Z, Wei J. ACS Nano, 2014, 8: 10396.

[34]

Zhao Y, Qiao J, Yu Z, Yu P, Xu K, Lau S P, Zhou W, Liu Z, Wang X, Ji W, Chai Y. Adv. Mater., 2017, 29: 1604230.

[35]

Zhou C, Zhao Y, Raju S, Wang Y, Lin Z, Chan M, Chai Y. Adv. Funct. Mater., 201, 26: 4223.

[36]

Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M. Nat. Mater., 2014, 13: 1128.

[37]

Zhang Y, Yao Y Y, Sendeku M G, Yin L, Zhan X Y, Wang F, Wang Z X, He J. Adv. Mater., 2019, 31: 1901694.

[38]

Liu T, Liu S, Tu K H, Schmidt H, Chu L, Xiang D, Martin J, Eda G, Ross C A, Garaj S. Nat. Nanotechnol, 2019, 14: 223.

[39]

Cui Y, Xin R, Yu Z, Pan Y, Ong Z Y, Wei X, Wang J, Nan H, Ni Z, Wu Y, Chen T, Shi Y, Wang B, Zhang G, Zhang Y W, Wang X. Adv. Mater., 2015, 27: 5230.

[40]

Das S, Chen H Y, Penumatcha A V, Appenzeller J. Nano Lett., 2013, 13: 100.

[41]

Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Science, 2015, 349: 625.

[42]

Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H P, Javey A. Science, 201, 354: 99.

[43]

Zhang H. ACS Nano, 2015, 9: 9451.

[44]

Liu H, Neal A T, Ye P D. ACS Nano, 2012, 6: 8563.

[45]

Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. Nature, 2015, 520: 656.

[46]

Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y, Duan X. Nature, 2018, 562: 254.

[47]

Mennel L, Symonowicz J, Wachter S, Polyushkin D K, Molina-Mendoza A J, Mueller T. Nature, 2020, 579: 62.

[48]

Yazyev O V, Louie S G. Nat. Mater., 2010, 9: 806.

[49]

Peng J, Wu J, Li X, Zhou Y, Yu Z, Guo Y, Wu J, Lin Y, Li Z, Wu X, Wu C, Xie Y. J. Am. Chem. Soc., 2017, 139: 9019.

[50]

Kulkarni S S, Wang C C, Sabbavarapu N M, Podilapu A R, Liao P H, Hung S C. Chem. Rev., 2018, 118: 8025.

[51]

Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X. Nano Lett., 2015, 15: 709.

[52]

Hu D, Xu G, Xing L, Yan X, Wang J, Zheng J, Lu Z, Wang P, Pan X, Jiao L. Angew. Chem. Int. Ed. Engl., 2017, 56: 3611.

[53]

Li G, Zhang Y Y, Guo H, Huang L, Lu H, Lin X, Wang Y L, Du S, Gao H J. Chem. Soc. Rev., 2018, 47: 6073.

[54]

Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324: 1312.

[55]

Liu K K, Zhang W, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12: 1538.

[56]

Wang S S, Rong Y M, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H. Chem. Mater., 2014, 26: 6371.

[57]

van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12: 554.

[58]

Hao Y, Bharathi M S, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S. Science, 2013, 342: 720.

[59]

Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P. J. Am. Chem. Soc., 2017, 139: 1073.

[60]

Chen W, Zhao J, Zhang J, Gu L, Yang Z, Li X, Yu H, Zhu X, Yang R, Shi D, Lin X, Guo J, Bai X, Zhang G. J. Am. Chem. Soc., 2015, 137: 15632.

[61]

Lin Z, Zhao Y, Zhou C, Zhong R, Wang X, Tsang Y H, Chai Y. Sci. Rep., 2015, 5: 18596.

[62]

Fei L, Lei S, Zhang W B, Lu W, Lin Z, Lam C H, Chai Y, Wang Y. Nat. Commun., 201, 7: 12206.

[63]

Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K. Nat. Chem., 2019, 11: 730.

[64]

Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y. Nat. Commun., 2018, 9: 979.

[65]

Dumcenco D, Ovchinnikov D, Marinov K, Lazic P, Gibertini M, Marzari N, Lopez Sanchez O, Kung Y C, Krasnozhon D, Chen M W, Bertolazzi S, Gillet P, Fontcuberta I, Morral A, Radenovic A, Kis A. ACS Nano, 2015, 9: 4611.

[66]

Gao Y, Liu Z, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z, Ma X L, Peng L M, Cheng H M, Ren W. Nat. Commun., 2015, 6: 8569.

[67]

Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M. Science, 2018, 362: 817.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/