Intercalation of Two-dimensional Layered Materials

Xinyun Zhou , Juehan Yang , Mianzeng Zhong , Qinglin Xia , Bo Li , Xidong Duan , Zhongming Wei

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 584 -596.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 584 -596. DOI: 10.1007/s40242-020-0185-0
Review

Intercalation of Two-dimensional Layered Materials

Author information +
History +
PDF

Abstract

Two-dimensional(2D) layered materials have attracted great attention due to their unique electrical, optical, thermal and mechanical properties. 2D layered materials have unique van der Waals gaps, thus the foreign substance, such as atoms, molecules and ions, can be inserted into the gaps to change the physical and chemical properties of 2D layered materials, which is conducive to realize their multi-functional application. Herein, we present a critical review of recent research progress of 2D intercalated materials, including the synthesizing methods, theoretical calculation, characterization and multifunctional application. Finally, we will summarize the current challenges and future opportunities in the development of 2D intercalated materials.

Keywords

Two-dimensional layered material / Intercalation / Multi-functional application

Cite this article

Download citation ▾
Xinyun Zhou, Juehan Yang, Mianzeng Zhong, Qinglin Xia, Bo Li, Xidong Duan, Zhongming Wei. Intercalation of Two-dimensional Layered Materials. Chemical Research in Chinese Universities, 2020, 36(4): 584-596 DOI:10.1007/s40242-020-0185-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. P. Natl. Acad. Sci. USA, 2005, 102: 10451.

[2]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.

[3]

Zhang C X, Li Q Z, Tang L M, Yang K K, Jin X, Chen K Q, Deng H X. J. Mater. Chem. C, 2019, 7: 6052.

[4]

Shi Y M, Li H N, Li L J. Chem. Soc. Rev., 2015, 44: 2744.

[5]

Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y. Chem. Soc. Rev., 2015, 44: 2664.

[6]

Gong C, Zhang H J, Wang W H, Colombo L G, Wallace R M, Cho K. Appl. Phys. Lett., 2013, 103: 053513.

[7]

Susarla S, Kutana A, Hachtel J A, Kochat V, Apte A, Vajtai R, Idrobo J C, Yakobson B I, Tiwary C S, Ajayan P M. Adv. Mater., 2017, 29: 1702457.

[8]

Li L, Han W, Pi L J, Niu P, Han J B, Wang C L, Su B, Li H Q, Xiong J, Bando Y. InfoMat, 2019, 1: 54.

[9]

Hart J L, Hantanasirisakul K, Lang A C, Anasori B, Pinto D, Pivak Y, van Omme J T, May S J, Gogotsi Y, Taheri M L. Nat. Commun., 2019, 10: 522.

[10]

Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26: 992.

[11]

Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29: 7633.

[12]

Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. J. Mater. Chem. C, 2017, 5: 2488.

[13]

Xue J M, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P, Leroy B J. Nat. Mater., 2011, 10: 282.

[14]

Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117: 6225.

[15]

Sakai Y, Saito S. J. Phys. Soc. Jpn., 2012, 81: 103701.

[16]

Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Nat. Mater., 2015, 14: 826.

[17]

Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotechnol., 2014, 9: 372.

[18]

Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B. Appl. Phys. Lett., 2014, 104: 103106.

[19]

Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J. 2D Mater., 2014, 1: 025001.

[20]

Tao J G, Luttrell T, Batzill M. Nat. Chem., 2011, 3: 296.

[21]

Sun Z Q, Liao T, Dou Y H, Hwang S M, Park M S, Jiang L, Kim J H, Dou S X. Nat. Commun., 2014, 5: 3813.

[22]

Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R A, Sasaki T. Nature, 2003, 422: 53.

[23]

Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S P, Han Z, Zhang Z D. Nat. Nanotechnol., 2018, 13: 554.

[24]

Jiang S W, Shan J, Mak K F. Nat. Mater., 2018, 17: 406.

[25]

Sarkar D, Xie X J, Liu W, Cao W, Kang J H, Gong Y J, Kraemer S, Ajayan P M, Baneijee K. Nature, 2015, 526: 91.

[26]

Cheng J B, Wang C L, Zou X M, Liao L. Adv. Opt. Mater., 2019, 7: 1800441.

[27]

Tian H, Chin M L, Najmaei S, Guo Q S, Xia F N, Wang H, Dubey M. Nano. Res., 201, 9: 1543.

[28]

Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B, Wei Z M. Adv. Funct. Mater., 2019, 29: 1900040.

[29]

Liu X, Sun G Z, Chen P, Liu J C, Zhang Z W, Li J, Ma H F, Zhao B, Wu R X, Dang W Q. Nano Res., 2018, 12: 339.

[30]

Kanahashi K, Pu J, Takenobu T. Adv. Energy Mater., 2019, 10: 1902842.

[31]

Ng H K, Abutaha A, Voiry D, Verzhbitskiy I, Cai Y Q, Zhang G, Liu Y, Wu J, Chhowalla M, Eda G. ACS Appl. Mater. Interfaces, 2019, 11: 12184.

[32]

Zhang Y, Zheng Y, Rui K, Hng H H, Hippalgaonkar K, Xu J W, Sun W P, Zhu J X, Yan Q Y, Huang W. Small, 2017, 13: 1700661.

[33]

Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L L, Ma X C, Chen X, Wang Y Y, Liu Y, Lin H Q, Jia J F, Xue Q K. Nat. Phys., 2010, 6: 104.

[34]

Qin S Y, Kim J, Niu Q, Shih C K. Science, 2009, 324: 1314.

[35]

Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E. Nat. Commun., 201, 7: 11043.

[36]

Machado B F, Serp P. Catal. Sci. Technol., 2011, 2: 54.

[37]

Voiry D, Yang J, Chhowalla M. Adv. Mater., 201, 28: 6197.

[38]

Deng D H, Novoselov K S, Fu Q, Zheng N F, Tian Z Q, Bao X H. Nat. Nanotechnol., 201, 11: 218.

[39]

Guo Y B, Chen Q, Nie A M, Yang H, Wang W B, Su J W, Wang S Z, Liu Y W, Wang S, Li H Q. ACS Nano, 2020, 14: 1635.

[40]

Pomerantseva E, Gogotsi Y. Nat. Energy, 2017, 2: 17089.

[41]

Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2: 16098.

[42]

Zhang X Y, Hou L L, Ciesielski A, Samorì P. Adv. Energy Mater., 201, 6: 1600671.

[43]

Sahoo R, Pal A, Pal T. Chem. Commun., 201, 52: 13528.

[44]

Li H, Lu G, Wang Y L, Yin Z Y, Cong C X, He Q Y, Wang L, Ding F, Yu T, Zhang H. Small, 2013, 9: 1974.

[45]

Yi M, Shen Z G. J. Mater. Chem. A, 2015, 3: 11700.

[46]

Gkountaras A, Kim Y, Coraux J, Bouchiat V, Lisi S, Barsoum M W, Ouisse T. Small, 2019, 16: 1905784.

[47]

Gao E L, Lin S Z, Qinn Z, Buehler M J, Feng X Q, Xu Z P. J. Mech. Phys. Solids, 2018, 115: 248.

[48]

Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J. Science, 2011, 331: 568.

[49]

Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340: 1226419.

[50]

Fan Q, Huang J W, Dong N N, Hong S, Yan C, Liu Y C, Qiu J S, Wang J, Sun Z Y. ACS Photonics, 2019, 6: 1051.

[51]

Yuan X, Xia Q L, Luo J H, Liu Y P, Peng Y D, Wang D W, Nie Y Z, Guo G H. Solid State Commun., 2018, 287: 1.

[52]

De Fazio D, Purdie D G, Ott A K, Braeuninger-Weimer P, Khodkov T, Goossens S, Taniguchi T, Watanabe K, Livreri P, Koppens F H L, Hofmann S, Goykhman I, Ferrari A C, Lombardo A. ACS Nano, 2019, 13: 8926.

[53]

Empante T A, Martinez A, Wurch M, Zhu Y B, Geremew A K, Yamaguchi K, Isarraraz M, Rumyantsev S, Reed E J, Balandin A A, Bartels L. Nano Lett, 2019, 19: 4355.

[54]

Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X N, Gu L, Mao N N, Feng Q L, Xie L M, Zhang J, Wu D Z, Zhang Z Y, Jin C H, Ji W, Zhang X X, Yuan J, Zhang Z. Nat. Commun., 2015, 6: 6293.

[55]

Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J. Nat. Mater., 2013, 12: 754.

[56]

van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C. Nat. Mater., 2013, 12: 554.

[57]

Wang J W, Luo Y, Cai X B, Shi R, Cheng C. Chem. Mater., 2020, 32: 2508.

[58]

Xu W. T., Jiang J. Y., Ma H. F., Zhang Z. W., Li J., Zhao B., Wu R. X., Yang X. D., Zhang H. M., Li B. L., Shu W. N., Zhang Z. C., Li B., Liu Y., Liao L., Duan X., Nano Res., 2020, 12274

[59]

Li Z F, Xi X K, Ding B, Li H, Liu E K, Yao Y, Wang W H. Cryst. Growth Des., 2020, 20: 706.

[60]

Brixner L. J. Inorg. Nucl. Chemistry, 1962, 24: 257.

[61]

Ethiraj A S, Kang D J. Nanoscale Res. Lett., 2012, 1: 70.

[62]

Kuriakose S, Satpati B, Mohapatra S. Phys. Chem. Chem. Phys., 2014, 16: 12741.

[63]

You J W, Hossain M D, Luo Z T. Nano Converg., 2018, 5: 26.

[64]

Xu M S, Liang T, Shi M M, Chen H Z. Chem. Rev., 2013, 113: 3766.

[65]

Mandyam S V, Zhao M Q, Masih Das P, Zhang Q, Price C C, Gao Z, Shenoy V B, Drndic M, Johnson A T C. ACS Nano, 2019, 13: 10490.

[66]

Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W, Ajayan P M. Nat. Mater., 2014, 13: 1135.

[67]

Duan X D, Wang C, Shaw J C, Cheng R, Chen Y, Li H L, Wu X P, Tang Y, Zhang Q L, Pan A L, Jiang J H, Yu R Q, Huang Y, Duan X F. Nat. Nanotechnol., 2014, 9: 1024.

[68]

Huang C M, Wu S F, Sanchez A M, Peters J J P, Beanland R, Ross J S, Rivera P, Yao W, Cobden D H, Xu X D. Nat. Mater., 2014, 13: 1096.

[69]

Li M Y, Shi Y M, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H. Science, 2015, 349: 524.

[70]

Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Nat. Rev. Mater., 201, 1: 16042.

[71]

Liu H W, Li D, Ma C, Zhang X H, Sun X X, Zhu C G, Zheng B Y, Zou Z X, Luo Z Y, Zhu X L. Nano Energy, 2019, 59: 66.

[72]

Zhang R Q, Li B, Yang J L. Nanoscale, 2015, 7: 14062.

[73]

Wang Y R, Li S A, Yi J B. Sci. Rep., 201, 6: 24153.

[74]

Nethravathi C, Prabhu J, Lakshmipriya S, Rajamathi M. ACS Omega, 2017, 2: 5891.

[75]

Bayatsarmadi B, Zheng Y, Vasileff A, Qiao S Z. Small, 2017, 13: 1700191.

[76]

Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D. Nano Lett, 2014, 14: 6275.

[77]

Li B, Xing T, Zhong M Z, Huang L, Lei N, Zhang J, Li J B, Wei Z M. Nat. Commun., 2017, 8: 1958.

[78]

Koski K J, Wessells C D, Reed B W, Cha J J, Kong D S, Cui Y. J. Am. Chem. Soc., 2012, 134: 13773.

[79]

Mashtalir O, Lukatskaya M R, Kolesnikov A I, Raymundo-Pinero E, Naguib M, Barsoum M W, Gogotsi Y. Nanoscale, 201, 8: 9128.

[80]

Kutana A, Penev E S, Yakobson B I. Nanoscale, 2014, 6: 5820.

[81]

Kim Y, Kim A R, Yang J H, Chang K E, Kwon J D, Choi S Y, Park J, Lee K E, Kim D H, Choi S M, Lee K H, Lee B H, Hahm M G, Cho B. Nano Lett, 201, 16: 5928.

[82]

Kim A R, Kim Y, Nam J, Chung H S, Kim D J, Kwon J D, Park S W, Park J, Choi S Y, Lee B H, Park J H, Lee K H, Kim D H, Choi S M, Ajayan P M, Hahm M G, Cho B. Nano Lett., 201, 16: 1890.

[83]

Whittingha S. M., Intercalation Chemistry, Elsevier, 2012

[84]

Noel M, Santhanam R. J. Power Sources, 1998, 72: 53.

[85]

Vogel F L. J. Mater. Sci., 1977, 12: 982.

[86]

Ubbelohde A. Proc. R. Soc. A, 1972, 327: 289.

[87]

Hennig G. J. Chem. Phys., 1965, 43: 1201.

[88]

Xi X X, Zhao L, Wang Z F, Berger H, Forro L, Shan J, Mak K F. Nat. Nanotechnol., 2015, 10: 765.

[89]

Goli P, Khan J, Wickramaratne D, Lake R K, Balandin A A. Nano Lett, 2012, 12: 5941.

[90]

Ritschel T, Trinckauf J, Koepernik K, Buchner B, Zimmermann M V, Berger H, Joe Y I, Abbamonte P, Geck J. Nat. Phys., 2015, 11: 328.

[91]

Wilson J A, Di Salvo F J, Mahajan S. Adv. Phys., 2001, 50: 1171.

[92]

Patzke G R, Krumeich F, Nesper R. Angew. Chem. Int. Ed., 2002, 41: 2446.

[93]

Khaliji K, Fallahi A, Martin-Moreno L, Low T. Phys. Rev. B, 2017, 95: 201401.

[94]

Prellier W, Singh M P, Murugavel P. J. Phys-Condens Mat., 2005, 17: 7753.

[95]

Hor Y S, Checkelsky J G, Qu D, Ong N P, Cava R J. J. Phys. Chem. Solids, 2011, 72: 572.

[96]

Chen Z X, Leng K, Zhao X X, Malkhandi S, Tang W, Tian B B, Dong L, Zheng L R, Lin M, Yeo B S, Loh K P. Nat. Commun., 2017, 8: 14548.

[97]

Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y. Adv. Mater., 2014, 26: 6467.

[98]

Gao C F, Li R P, Zhong M Z, Wang R, Huang W. J. Phys. Chem. Lett., 2020, 11: 93.

[99]

Liu P, Nie Y Z, Xia Q L, Guo G H. Phys. Lett. A, 2017, 381: 1102.

[100]

Nie Y Z, Rahman M, Pei L, Sidike A, Xia Q L, Guo G H. Phys. Rev. B., 2017, 96: 075401.

[101]

Cheng Y C, Kaloni T P, Huang G S, Schwingenschlögl U. Appl. Phys. Lett., 2011, 99: 053117.

[102]

Yang H, Pan L F, Xiao M Q, Fang J Z, Cui Y, Wei Z M. Sci. China Mater., 2020, 63: 1.

[103]

Tu Z Y, Wu M H. Adv. Electron. Mater., 2019, 5: 1800960.

[104]

Inoue M, Negishi H. J. Phys. Soc. Jpn., 1984, 53: 943.

[105]

Zhu X D, Sun Y P, Zhu X B, Luo X, Wang B S, Li G, Yang Z R, Song W H, Dai J M. J. Cryst. Growth, 2008, 311: 218.

[106]

Li L J, Sun Y P, Zhu X D, Wang B S, Zhu X B, Yang Z R, Song W H. Solid State Commun., 2010, 150: 2248.

[107]

Zhu X D, Sun Y P, Zhang S B, Lei H C, Li L J, Zhu X B, Yang Z R, Song W H, Dai J M. Solid State Commun., 2009, 149: 1296.

[108]

Li L J, Lu W J, Zhu X D, Zhu X B, Yang Z R, Song W H, Sun Y P. J. Magn. Magn. Mater., 2011, 323: 2536.

[109]

Hui J, Burgess M, Zhang J, Rodríguez-López J. ACS Nano, 201, 10: 4248.

[110]

Okamoto Y. J. Phys. Chem. C, 2014, 118: 16.

[111]

Dresselhaus M S, Dresselhaus G. Adv. Phys., 2002, 51: 1.

[112]

Dahn J. Phys. Rev. B, 1991, 44: 9170.

[113]

Song M K, Hong S D, No K T. J. Electrochem. Soc., 2001, 148: A1159.

[114]

Zheng T, Dahn J R. Phys. Rev. B, 199, 53: 3061.

[115]

Zheng T, Reimers J N, Dahn J R. Phys. Rev. B, 1995, 51: 734.

[116]

Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4: 1716.

[117]

Yu M H, Shao H, Wang G, Yang F, Liang C L, Rozier P, Wang C Z, Lu X H, Simon P, Feng X L. Nat. Commun., 2020, 11: 1348.

[118]

Shkvarina E G, Titov A A, Doroschek A A, Shkvarin A S, Starichenko D V, Plaisier J R, Gigli L, Titov A N. J. Chem. Phys., 2017, 147: 044712.

[119]

Morosan E, Zandbergen H W, Dennis B S, Bos J W G, Onose Y, Klimczuk T, Ramirez A P, Ong N P, Cava R J. Nat. Phys., 200, 2: 544.

[120]

Liu X C, Zhao S Y, Sun X P, Deng L Z, Zou X L, Hu Y C, Wang Y X, Chu C W, Li J, Wu J J, Ke F S, Ajayan P M. Sci. Adv., 2020, 6: 1.

[121]

Zhao X X, Song P, Wang C C, Riis-Jensen A C, Fu W, Deng Y, Wan D Y, Kang L X, Ning S C, Dan J D, Venkatesan T, Liu Z, Zhou W, Thygesen K S, Luo X, Pennycook S J, Loh K P. Nature, 2020, 581: 171.

[122]

Motter J P, Koski K J, Cui Y. Chem. Mater., 2014, 26: 2313.

[123]

Gong Y J, Yuan H T, Wu C L, Tang P Z, Yang S Z, Yang A K, Li G D, Liu B F, van de Groep J, Brongersma M L. Nat. Nanotechnol., 2018, 13: 294.

[124]

Leapman R, Grunes L, Fejes P. Phys. Rev. B, 1982, 26: 614.

[125]

Vodungbo B, Zheng Y, Marangolo M, Demaille D, Varalda J. J. Phys.-Condens. Mat., 2007, 19: 116205.

[126]

Stark M S, Kuntz K L, Martens S J, Warren S C. Adv. Mater., 2019, 31: 1808213.

[127]

Yang K, Jia L L, Liu X H, Wang Z J, Wang Y, Li Y M, Chen H B, Wu B, Yang L Y, Pan F. Nano Res., 2020, 13: 412.

[128]

Ishihara T, Yokoyama Y, Kozono F, Hayashi H. J. Power Sources, 2011, 196: 6956.

[129]

Patterson A L. J. Am. Chem. Soc., 1955, 77: 2030.

[130]

Wang C, He Q Y, Halim U, Liu Y Y, Zhu E B, Lin Z Y, Xiao H, Duan X D, Feng Z Y, Cheng R, Weiss N O, Ye G J, Huang Y C, Wu H, Cheng H C, Shakir I, Liao L, Chen X H, Goddard W, Huang Y. Nature, 2018, 555: 231.

[131]

Jung N, Kim N, Jockusch S, Turro N J, Brus L. Nano Lett, 2009, 9: 4133.

[132]

Li T, Senesi A J, Lee B. Chem. Rev., 201, 116: 11128.

[133]

Geng F X, Ma R Z, Ebina Y, Yamauchi Y, Miyamoto N, Sasaki T. J. Am. Chem. Soc., 2014, 136: 5491.

[134]

Bao W Z, Wan J Y, Han X G, Cai X H, Zhu H L, Kim D H, Ma D K, Xu Y L, Munday J N, Drew H D, Fuhrer M S, Hu L B. Nat. Commun., 2014, 5: 4224.

[135]

Lacey S D, Wan J Y, Cresce A V W, Russell S M, Dai J Q, Bao W Z, Xu K, Hu L B. Nano Letters, 2015, 15: 1018.

[136]

Wan C L, Gu X K, Dang F, Itoh T, Wang Y F, Sasaki H, Kondo M, Koga K, Yabuki K, Snyder G J, Yang R G, Koumoto K. Nat. Mater., 2015, 14: 622.

[137]

Py M A, Haering R R. Can. J. Phys., 1983, 61: 76.

[138]

Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M. ACS Nano, 2012, 6: 7311.

[139]

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11: 5111.

[140]

Joensen P, Frindt R, Morrison S R. Mater. Res. Bull., 198, 21: 457.

[141]

Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P. Nat. Commun., 2014, 5: 2995.

[142]

Wang C, Xia Q L, Nie Y Z, Guo G H. J. Appl. Phys., 2015, 117: 124302.

[143]

Liu J C, Liu X, Chen Z J, Miao L L, Duan X D. Nano Res., 2018, 12: 1.

[144]

Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. P. Natl. Acad. Sci. USA, 2013, 110: 19701.

[145]

Xiong F, Wang H T, Liu X G, Sun J, Brongersma M, Pop E, Cui Y. Nano Lett., 2015, 15: 6777.

[146]

Wan J Y, Gu F, Bao W Z, Dai J Q, Shen F, Luo W, Han X G, Urban D, Hu L B. Nano Lett, 2015, 15: 3763.

[147]

He Q Y, Lin Z Y, Ding M N, Yin A X, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X F. Nano Lett., 2019, 19: 6819.

[148]

Chung D Y, Hogan T, Brazis P, Rocci-Lane M, Kannewurf C, Bastea M, Uher C, Kanatzidis M G. Science, 2000, 287: 1024.

[149]

Wan C L, Wang Y F, Wang N, Norimatsu W, Kusunoki M, Koumoto K. J. Electron. Mater., 2011, 40: 1271.

[150]

Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energ. Environ. Sci., 2015, 8: 1594.

[151]

Kong D S, Cha J J, Wang H T, Lee H R, Cui Y. Energ. Environ. Sci., 2013, 6: 3553.

[152]

Zheng Y, Jiao Y, Jaroniec M, Qiao S Z. Angew. Chem. Int. Edit., 2015, 54: 52.

[153]

Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13: 6222.

[154]

Shi M Z, Wang N Z, Lei B, Shang C, Meng F B, Ma L K, Zhang F X, Kuang D Z, Chen X H. Phys. Rev. Mater., 2018, 2: 074801.

[155]

Wang N Z, Shi M Z, Shang C, Meng F B, Ma L K, Luo X G, Chen X H. New J. Phys., 2018, 20: 023014.

[156]

Zhu G H, Liu J, Zheng Q Y, Zhang R G, Li D Y, Banerjee D, Cahill D G. Nat. Commun., 201, 7: 13211.

[157]

Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G. Nat. Commun., 2018, 9: 1.

[158]

Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, Cheng J G. Phys. Rev. B, 2018, 97: 020508.

[159]

Tang L P, Li Q Z, Zhang C X, Ning F, Zhou W X, Tang L M, Chen K Q. J. Magn. Magn. Mater., 2019, 488: 165354.

[160]

Luo J H, Li B, Zhang J M, Zhong M Z, Xia Q L, Nie Y Z, Guo G H. J. Magn. Magn. Mater., 2019, 486: 165269.

[161]

Wang N Z, Tang H B, Shi M Z, Zhang H, Zhuo W Z, Liu D Y, Meng F B, Ma L K, Ying J J, Zou L J, Sun Z, Chen X H. J. Am. Chem. Soc., 2019, 141: 17166.

[162]

Kamlapure A, Cornils L, Wiebe J, Wiesendanger R. Nat. Commun., 2018, 9: 1.

[163]

Choi D J, Fernández C G, Herrera E, Rubio-Verdú C, Ugeda M M, Guillamón I, Suderow H, Pascual J I, Lorente N. Phys. Eev. Lett., 2018, 120: 167001.

[164]

Li Z. J., Zhang X. Y., Zhao X. X., Li J., Herng T. S., Xu H. M., Lin F. R., Lyu P., Peng X. N., Yu W., Adv. Mater., 2020, 1907645

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/