Two-dimensional Noble Metal Nanomaterials for Electrocatalysis

Rongbo Sun , Wenxin Guo , Xiao Han , Xun Hong

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 597 -610.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 597 -610. DOI: 10.1007/s40242-020-0183-2
Review

Two-dimensional Noble Metal Nanomaterials for Electrocatalysis

Author information +
History +
PDF

Abstract

Two-dimensional noble metal nanomaterials(2D NMNs) are widely used as electrocatalyst. In recent years, the researchers have focused on the synthesis of 2D NMNs at the atomic scale, and realize the improvement of electrocatalytic performance through further structural modification to reduce the usage of noble metals. Herein, we systematically introduce the synthesis methods of 2D NMNs categorized by element type. Subsequently, the catalytic applications toward a variety of electrocatalytic reactions are described in detail including the hydrogen evolution reaction(HER), oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and CO2 reduction reaction (CO2RR). Finally, the potential opportunities and remaining challenges in this emerging research area are proposed.

Keywords

Two-dimensional nanomaterial / Noble metal / Electrocatalysis

Cite this article

Download citation ▾
Rongbo Sun, Wenxin Guo, Xiao Han, Xun Hong. Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36(4): 597-610 DOI:10.1007/s40242-020-0183-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117: 6225.

[2]

Nasilowski M, Mahler B, Lhuillier E, Ithurria S, Dubertret B. Chem. Rev., 201, 116: 10934.

[3]

Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Chem. Rev., 2018, 118: 6337.

[4]

Deng D, Novoselov K S, Fu Q, Zheng N, Tian Z, Bao X. Nat. Nanotechnol., 201, 11: 218.

[5]

Xia Y, Yang X. Accounts Chem. Res., 2017, 50: 450.

[6]

Luo Y, Liu Z, Wu G, Wang G, Chao T, Li H, Liu J, Hong X. Chin. Chem. Lett., 2019, 30: 1093.

[7]

Ge Y, Shi Z, Tan C, Chen Y, Cheng H, He Q, Zhang H. Chem., 2020, 6: 1237.

[8]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.

[9]

Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M, Geim A K. Science, 2008, 320: 1308.

[10]

Weng Q, Wang X, Wang X, Bando Y, Golberg D. Chem. Soc. Rev., 201, 45: 3989.

[11]

Zhang J, Chen Y, Wang X. Energy Environ. Sci., 2015, 8: 3092.

[12]

Hong X, Tan C, Chen J, Xu Z, Zhang H. Nano Res., 2014, 8: 40.

[13]

Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346: 1356.

[14]

Peng Y, Huang Y, Zhu Y, Chen B, Wang L, Lai Z, Zhang Z, Zhao M, Tan C, Yang N, Shao F, Han Y, Zhang H. J. Am. Chem. Soc., 2017, 139: 8698.

[15]

Wu G, Chen W, Zheng X, He D, Luo Y, Wang X, Yang J, Wu Y, Yan W, Zhuang Z, Hong X, Li Y. Nano Energy, 2017, 38: 167.

[16]

Ling T, Wang J J, Zhang H, Song S T, Zhou Y Z, Zhao J, Du X W. Adv. Mater., 2015, 27: 5396.

[17]

Ma Y, Li B, Yang S. Mater. Chem. Front., 2018, 2: 456.

[18]

Cheng H, Yang N, Lu Q, Zhang Z, Zhang H. Adv. Mater., 2018, 30: e1707189.

[19]

Zeb Gul Sial M A, Ud Din M A, Wang X. Chem. Soc. Rev., 2018, 47: 6175.

[20]

Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L, Xu J, Liu M, Zheng L, Arquer F P G, Dinh C T, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, Luna P D, Janmohamed A, Xin H L, Yang H, Vojvodic A, Sargent E H. Science, 201, 352: 333.

[21]

Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44: 2060.

[22]

Debe M K. Nature, 2012, 486: 43.

[23]

Chao T, Hu Y, Hong X, Li Y. ChemElectroChem, 2019, 6: 289.

[24]

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K, Jaramillo T F. Science, 2017, 355: eaad4998.

[25]

Shao M, Chang Q, Dodelet J P, Chenitz R. Chem. Rev., 201, 116: 3594.

[26]

Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas A P, Stamenkovic V R, Markovic N M. Nat. Chem., 2013, 5: 300.

[27]

Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Chem. Soc. Rev., 2017, 46: 337.

[28]

Zhu D D, Liu J L, Qiao S Z. Adv. Mater., 201, 28: 3423.

[29]

Kulkarni A, Siahrostami S, Patel A, Norskov J K. Chem. Rev., 2018, 118: 2302.

[30]

McCrory C C, Jung S, Ferrer I M, Chatman S M, Peters J C, Jaramillo T F. J. Am. Chem. Soc., 2015, 137: 4347.

[31]

Liu H L, Nosheen F, Wang X. Chem. Soc. Rev., 2015, 44: 3056.

[32]

Liu S, Tian N, Xie A Y, Du J H, Xiao J, Liu L, Sun H Y, Cheng Z Y, Zhou Z Y, Sun S G. J. Am. Chem. Soc., 201, 138: 5753.

[33]

Hong X, Wang D, Cai S, Rong H, Li Y. J. Am. Chem. Soc., 2012, 134: 18165.

[34]

Ge J, Li Z, Hong X, Li Y. Chem. Eur. J., 2019, 25: 5113.

[35]

Zou X, Zhang Y. Chem. Soc. Rev., 2015, 44: 5148.

[36]

Hunter B M, Gray H B, Muller A M. Chem. Rev., 201, 116: 14120.

[37]

Yang M Q, Wang J, Wu H, Ho G W. Small, 2018, 14: e1703323.

[38]

Zhu C, Du D, Eychmuller A, Lin Y. Chem. Rev., 2015, 115: 8896.

[39]

Ren X, Lv Q, Liu L, Liu B, Wang Y, Liu A, Wu G. Sust. Energy Fuels, 2020, 4: 15.

[40]

Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem. Rev., 2019, 119: 1806.

[41]

An B, Li M, Wang J, Li C. Front. Chem. Sci. Eng., 201, 10: 360.

[42]

Feng Y, Huang B, Yang C, Shao Q, Huang X. Adv. Funct. Mater., 2019, 29: 1904429.

[43]

Zhang H. ACS Nano, 2015, 9: 9451.

[44]

Chia X, Pumera M. Nat. Catal., 2018, 1: 909.

[45]

Dou Y, Zhang L, Xu X, Sun Z, Liao T, Dou S X. Chem. Soc. Rev., 2017, 46: 7338.

[46]

Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed., 2009, 48: 60.

[47]

Luo M, Sun Y, Wang L, Guo S. Adv. Energy Mater., 2017, 7: 1602073.

[48]

Liz-Marzan L M, Grzelczak M. Science, 2017, 356: 1120.

[49]

Xie S, Liu X Y, Xia Y. Nano Res., 2015, 8: 82.

[50]

Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B, Zhang H. Chem. Rev., 2018, 118: 6409.

[51]

Fan Z, Zhang H. Accounts Chem. Res., 201, 49: 2841.

[52]

Yi M, Shen Z. J. Mater. Chem. A, 2015, 3: 11700.

[53]

Lizmarzan L M, Grzelczak M. Science, 2017, 356: 1120.

[54]

Wang F, Wang Z, Shifa T A, Wen Y, Wang F, Zhan X, Wang Q, Xu K, Huang Y, Yin L, Jiang C, He J. Adv. Funct. Mater., 2017, 27: 1603254.

[55]

Lee J, Yang J, Kwon S G, Hyeon T. Nat. Rev. Mater., 201, 1: 16034.

[56]

Gilroy K D, Ruditskiy A, Peng H C, Qin D, Xia Y. Chem. Rev., 201, 116: 10414.

[57]

O’Brien M N, Jones M R, Kohlstedt K L, Schatz G C, Mirkin C A. Nano Lett., 2015, 15: 1012.

[58]

Funatsu A, Tateishi H, Hatakeyama K, Fukunaga Y, Taniguchi T, Koinuma M, Matsuura H, Matsumoto Y. Chem. Commun., 2014, 50: 8503.

[59]

Xu D, Lv H, Jin H, Liu Y, Ma Y, Han M, Bao J, Liu B. J. Phys. Chem. Lett., 2019, 10: 663.

[60]

Xie B, Zhang Y, Du N, Li H, Hou W, Zhang R. Chem. Commun., 201, 52: 13815.

[61]

Liu H, Zhong P, Liu K, Han L, Zheng H, Yin Y, Gao C. Chem. Sci., 2018, 9: 398.

[62]

Chhetri M, Rana M, Loukya B, Patil P K, Datta R, Gautam U K. Adv. Mater., 2015, 27: 4430.

[63]

Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Nat. Commun., 2013, 4: 1444.

[64]

Dai L, Zhao Y, Qin Q, Zhao X, Xu C, Zheng N. ChemNanoMat, 201, 2: 776.

[65]

Qin Y, Luo M, Sun Y, Li C, Huang B, Yang Y, Li Y, Wang L, Guo S. ACS Catal., 2018, 8: 5581.

[66]

Bu L, Zhang N, Guo S, Zhang X, Li J, Yao J, Wu T, Lu G, Ma J, Su D, Huang X. Science, 201, 354: 1410.

[67]

Liao H, Zhu J, Hou Y. Nanoscale, 2014, 6: 1049.

[68]

Saleem F, Zhang Z, Xu B, Xu X, He P, Wang X. J. Am. Chem. Soc., 2013, 135: 18304.

[69]

Saleem F, Zhang Z, Cui X, Gong Y, Chen B, Lai Z, Yun Q, Gu L, Zhang H. J. Am. Chem. Soc., 2019, 141: 14496.

[70]

Zhang H, Jin M, Xiong Y, Lim B, Xia Y. Accounts Chem. Res., 2013, 46: 1783.

[71]

Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Adv. Funct. Mater., 2009, 19: 189.

[72]

Luo M, Zhao Z, Zhang Y, Sun Y, Xing Y, Lv F, Yang Y, Zhang X, Hwang S, Qin Y, Ma J Y, Lin F, Su D, Lu G, Guo S. Nature, 2019, 574: 81.

[73]

Surnev S, Sock M, Ramsey M G, Netzer F P, Wiklund M, Borg M, Andersen J N. Surf. Sci., 2000, 470: 171.

[74]

Siril P F, Ramos L, Beaunier P, Archirel P, Etcheberry A, Remita H. Chem. Mater., 2009, 27: 5170.

[75]

Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z, Zheng N. Nat. Nanotechnol., 2010, 6: 28.

[76]

Li H, Chen G, Yang H, Wang X, Liang J, Liu P, Chen M, Zheng N. Angew. Chem. Int. Ed., 2013, 52: 8368.

[77]

Yin X, Liu X, Pan Y T, Walsh K A, Yang H. Nano Lett., 2014, 14: 7188.

[78]

Hong J W, Kim Y, Wi D H, Lee S, Lee S U, Lee Y W, Choi S I, Han S W. Angew. Chem. Int. Ed., 201, 55: 2753.

[79]

Puntes V F, Zanchet D, Erdonmez C K, Alivisatos A P. J. Am. Chem. Soc., 2002, 124: 12874.

[80]

Yang N, Zhang Z, Chen B, Huang Y, Chen J, Lai Z, Chen Y, Sindoro M, Wang A L, Cheng H, Fan Z, Liu X, Li B, Zong Y, Gu L, Zhang H. Adv. Mater., 2017, 29: 1700769.

[81]

Wang Y, Peng H C, Liu J, Huang C Z, Xia Y. Nano Lett., 2015, 15: 1445.

[82]

Huang W, Kang X, Xu C, Zhou J, Deng J, Li Y, Cheng S. Adv. Mater., 2018, 30: 1706962.

[83]

Qiu X, Zhang H, Wu P, Zhang F, Wei S, Sun D, Xu L, Tang Y. Adv. Funct. Mater., 2017, 27: 1603852.

[84]

Liu J, Ma Q, Huang Z, Liu G, Zhang H. Adv. Mater., 2019, 31: e1800696.

[85]

Jiang Y, Yan Y, Chen W, Khan Y, Wu J, Zhang H, Yang D. Chem. Commun., 201, 52: 14204.

[86]

He C, Tao J, Shen P K. ACS Catal., 2018, 8: 910.

[87]

Hu Y, Luo X, Wu G, Chao T, Li Z, Qu Y, Li H, Wu Y, Jiang B, Hong X. ACS Appl. Mater. Interfaces, 2019, 11: 42298.

[88]

Ge J, He D, Chen W, Ju H, Zhang H, Chao T, Wang X, You R, Lin Y, Wang Y, Zhu J, Li H, Xiao B, Huang W, Wu Y, Hong X, Li Y. J. Am. Chem. Soc., 201, 138: 13850.

[89]

Ge J, Wei P, Wu G, Liu Y, Yuan T, Li Z, Qu Y, Wu Y, Li H, Zhuang Z, Hong X, Li Y. Angew. Chem. Int. Ed., 2018, 57: 3435.

[90]

Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53: 1756.

[91]

Fan Z, Huang X, Chen Y, Huang W, Zhang H. Nat. Protoc., 2017, 12: 2367.

[92]

Chen C C, Hsu C H, Kuo P L. Langmuir, 2007, 23: 6801.

[93]

Jang M H, Kim J K, Tak H, Yoo H. J. Mater. Chem., 2011, 27: 17606.

[94]

Hong X, Tan C L, Liu J Q, Yang J, Wu X J, Fan Z X, Luo Z M, Chen J Z, Zhang X, Chen B, Zhang H. J. Am. Chem. Soc., 2015, 137: 1444.

[95]

Tsuji M, Gomi S, Maeda Y, Matsunaga M, Hikino S, Uto K, Tsuji T, Kawazumi H. Langmuir, 2012, 28: 8845.

[96]

Lohse S E, Burrows N D, Scarabelli L, Liz-Marzán L M, Murphy C J. Chem. Mat., 2013, 26: 34.

[97]

Hwang S Y, Zhang M, Zhang C, Ma B, Zheng J, Peng Z. Chem. Commun., 2014, 50: 14013.

[98]

Chen M, Wu B, Yang J, Zheng N. Adv. Mater., 2012, 24: 862.

[99]

Long R, Zhou S, Wiley B J, Xiong Y. Chem. Soc. Rev., 2014, 43: 6288.

[100]

Chen L, Ji F, Xu Y, He L, Mi Y, Bao F, Sun B, Zhang X, Zhang Q. Nano Lett., 2014, 14: 7201.

[101]

Huang X, Qi X, Huang Y, Li S, Xue C, Gan C L, Boey F, Zhang H. ACS Nano, 2010, 4: 6196.

[102]

Shaik F, Zhang W, Niu W. J. Phys. Chem. C, 2017, 121: 9572.

[103]

Brus L. Nat. Mater., 201, 15: 824.

[104]

DuChene J S, Niu W, Abendroth J M, Sun Q, Zhao W, Huo F, Wei W D. Chem. Mater., 2012, 25: 1392.

[105]

Zhai Y, DuChene J S, Wang Y C, Qiu J, Johnston-Peck A C, You B, Guo W, DiCiaccio B, Qian K, Zhao E W, Ooi F, Hu D, Su D, Stach E A, Zhu Z, Wei W D. Nat. Mater., 201, 15: 889.

[106]

Niu J, Wang D, Qin H, Xiong X, Tan P, Li Y, Liu R, Lu X, Wu J, Zhang T, Ni W, Jin J. Nat. Commun., 2014, 5: 3313.

[107]

Zhou M, Lin M, Chen L, Wang Y, Guo X, Peng L, Guo X, Ding W. Chem. Commun., 2015, 51: 5116.

[108]

Wang L, Zhu Y, Wang J Q, Liu F, Huang J, Meng X, Basset J M, Han Y, Xiao F S. Nat. Commun., 2015, 6: 6957.

[109]

Huang X, Li S, Huang Y, Wu S, Zhou X, Li S, Gan C L, Boey F, Mirkin C A, Zhang H. Nat. Commun., 2011, 2: 292.

[110]

Fan Z, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Png C E, Gan C L, Yang P, Zhang H. Nat. Commun., 2015, 6: 7684.

[111]

Fan Z, Zhu Y, Huang X, Han Y, Zhang H. Angew. Chem. Int. Ed., 2015, 54: 5672.

[112]

Fan Z, Luo Z, Huang X, Li B, Chen Y, Wang J, Hu Y, Zhang H. J. Am. Chem. Soc., 201, 138: 1414.

[113]

Fan Z, Luo Z, Chen Y, Wang J, Li B, Zong Y, Zhang H. Small, 201, 12: 3908.

[114]

Millstone J E, Hurst S J, Metraux G S, Cutler J I, Mirkin C A. Small, 2009, 5: 646.

[115]

Jin R, Cao Y, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294: 1901.

[116]

Jin R, Cao Y C, Hao E, Metraux G S, Schatz G C, Mirkin C A. Nature, 2003, 425: 487.

[117]

Xue C, Millstone J E, Li S, Mirkin C A. Angew. Chem. Int. Ed., 2007, 46: 8436.

[118]

Kim M H, Kwak S K, Im S H, Lee J B, Choi K Y, Byun D J. J. Mater. Chem. C, 2014, 2: 6165.

[119]

Zhang Q, Li N, Goebl J, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133: 18931.

[120]

Zeng J, Xia X, Rycenga M, Henneghan P, Li Q, Xia Y. Angew. Chem. Int. Ed., 2011, 50: 244.

[121]

Liu H, Tang H, Fang M, Si W, Zhang Q, Huang Z, Gu L, Pan W, Yao J, Nan C, Wu H. Adv. Mater., 201, 28: 8170.

[122]

Chiou W H, Wang Y W, Kao C L, Chen P C, Wu C C. Organometallics, 2014, 33: 4240.

[123]

Zhao L, Xu C, Su H, Liang J, Lin S, Gu L, Wang X, Chen M, Zheng N. Adv. Sci., 2015, 2: 1500100.

[124]

Hou C, Zhu J, Liu C, Wang X, Kuang Q, Zheng L. CrystEngComm, 2013, 15: 6127.

[125]

Duan H, Yan N, Yu R, Chang C R, Zhou G, Hu H S, Rong H, Niu Z, Mao J, Asakura H, Tanaka T, Dyson P J, Li J, Li Y. Nat. Commun., 2014, 5: 3093.

[126]

Pi Y, Zhang N, Guo S, Guo J, Huang X. Nano Lett., 201, 16: 4424.

[127]

Jiang B, Guo Y, Kim J, Whitten A E, Wood K, Kani K, Rowan A E, Henzie J, Yamauchi Y. J. Am. Chem. Soc., 2018, 140: 12434.

[128]

Yin A X, Liu W C, Ke J, Zhu W, Gu J, Zhang Y W, Yan C H. J. Am. Chem. Soc., 2012, 134: 20479.

[129]

Kong X, Xu K, Zhang C, Dai J, Norooz Oliaee S, Li L, Zeng X, Wu C, Peng Z. ACS Catal., 201, 6: 1487.

[130]

Yao Q, Huang B, Zhang N, Sun M, Shao Q, Huang X. Angew. Chem. Int. Ed., 2019, 58: 13983.

[131]

Mao J, He C T, Pei J, Chen W, He D, He Y, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Nat. Commun., 2018, 9: 4958.

[132]

Wu G, Zheng X, Cui P, Jiang H, Wang X, Qu Y, Chen W, Lin Y, Li H, Han X, Hu Y, Liu P, Zhang Q, Ge J, Yao Y, Sun R, Wu Y, Gu L, Hong X, Li Y. Nat. Commun., 2019, 10: 4855.

[133]

Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013, 5: 263.

[134]

Wang Q, O’Hare D. Chem. Rev., 2012, 112: 4124.

[135]

Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26: 992.

[136]

Wang G, Tao J, Zhang Y, Wang S, Yan X, Liu C, Hu F, He Z, Zuo Z, Yang X. ACS Appl. Mater. Interfaces, 2018, 10: 25409.

[137]

Lu X, Xie S, Yang H, Tong Y, Ji H. Chem. Soc. Rev., 2014, 43: 7581.

[138]

Luo Y, Luo X, Wu G, Li Z, Wang G, Jiang B, Hu Y, Chao T, Ju H, Zhu J, Zhuang Z, Wu Y, Hong X, Li Y. ACS Appl. Mater. Interfaces, 2018, 10: 34147.

[139]

Higgins D, Zamani P, Yu A, Chen Z. Energy Environ. Sci., 201, 9: 357.

[140]

Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Nat. Commun., 2015, 6: 6430.

[141]

Yao T, An X, Han H, Chen J Q, Li C. Adv. Energy Mater., 2018, 8: 1800210.

[142]

Yao Y, Gu X K, He D, Li Z, Liu W, Xu Q, Yao T, Lin Y, Wang H J, Zhao C, Wang X, Yin P, Li H, Hong X, Wei S, Li W X, Li Y, Wu Y. J. Am. Chem. Soc., 2019, 141: 19964.

[143]

Chao T, Luo X, Chen W, Jiang B, Ge J, Lin Y, Wu G, Wang X, Hu Y, Zhuang Z, Wu Y, Hong X, Li Y. Angew. Chem. Int. Ed., 2017, 56: 16047.

[144]

Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Nørskov J K, Rossmeisl J. ChemCatChem, 2011, 3: 1159.

[145]

Chu S, Cui Y, Liu N. Nat. Mater., 201, 16: 16.

[146]

Cano Z P, Banham D, Ye S, Hintennach A, Lu J, Fowler M, Chen Z. Nat. Energy, 2018, 3: 279.

[147]

Winther-Jensen B, Winther-Jensen O, Forsyth M, Macfarlane D R. Science, 2008, 321: 671.

[148]

Buitenwerf R, Rose L, Higgins S I. Nat. Clim. Change., 2015, 5: 364.

[149]

Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R. J. Am. Chem. Soc., 2017, 139: 4052.

[150]

Liu S, Tao H, Zeng L, Liu Q, Xu Z, Liu Q, Luo J L. J. Am. Chem. Soc., 2017, 139: 2160.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/