2D Material Chemistry: Graphdiyne-based Biochemical Sensing

Jiaofu Li , Changjin Wan , Cong Wang , Han Zhang , Xiaodong Chen

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 622 -630.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 622 -630. DOI: 10.1007/s40242-020-0181-4
Review

2D Material Chemistry: Graphdiyne-based Biochemical Sensing

Author information +
History +
PDF

Abstract

The modern internet-of-things era has witnessed an increasing growth in the demand for advanced sensors to collect precise information. To meet this demand, extensive efforts have been devoted to exploring competent materials and designing rational architectures for the fabrication of sensing devices. Graphdiyne represents a promising material due to the attractive electronic, optical and electrochemical properties deriving from its unique molecular structure. In this review, we firstly provide the points of view on the architectures and work principles of the graphdiyne-based sensing devices with respect to resistive, electrochemical, photoelectrochemical and fluorescent categories. Secondly, we present the promising applications on biochemical sensing, such as the detection of DNA, micro-RNA, and glucose. Finally, the challenges and prospects of graphdiyne-based biochemical sensing platforms are also discussed, in order to provide a cornerstone for understanding this rapidly developing area.

Keywords

Graphdiyne / 2D material / Electrochemical / Biochemical sensing / Surface chemistry

Cite this article

Download citation ▾
Jiaofu Li, Changjin Wan, Cong Wang, Han Zhang, Xiaodong Chen. 2D Material Chemistry: Graphdiyne-based Biochemical Sensing. Chemical Research in Chinese Universities, 2020, 36(4): 622-630 DOI:10.1007/s40242-020-0181-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Classen C. International Social Science Journal, 1997, 49: 401.

[2]

Liu Y, He K, Chen G, Leow W R, Chen X. Chem. Rev., 2017, 117: 12893.

[3]

Wan C, Cai P, Wang M, Qian Y, Huang W, Chen X. Adv. Mater., 2020, 32: 1902434.

[4]

Jiang Y, Liu Z, Wang C, Chen X. Acc. Chem. Res., 2019, 52: 82.

[5]

Wang T, Qi D, Yang H, Liu Z, Wang M, Leow W R, Chen G, Yu J, He K, Cheng H, Wu Y L, Zhang H, Chen X. Adv. Mater., 2019, 31: 1803883.

[6]

Wan C, Chen G, Fu Y, Wang M, Matsuhisa N, Pan S, Pan L, Yang H, Wan Q, Zhu L, Chen X. Adv. Mater., 2018, 30: 1801291.

[7]

Ji S, Wan C, Wang T, Li Q, Chen G, Wang J, Liu Z, Yang H, Liu X, Chen X. Adv. Mater., 2020, 32: 2001496.

[8]

Wang T, Yang H, Qi D, Liu Z, Cai P, Zhang H, Chen X. Small, 2018, 14: 1702933.

[9]

Pan S, Liu Z, Wang M, Jiang Y, Luo Y, Wan C, Qi D, Wang C, Ge X, Chen X. Adv. Mater., 2019, 31: 1903130.

[10]

Chen G, Cui Y, Chen X. Chem. Soc. Rev., 2019, 48: 1434.

[11]

Amoli V, Kim J S, Jee E, Chung Y S, Kim S Y, Koo J, Choi H, Kim Y, Kim D H. Nat. Commun., 2019, 10: 4019.

[12]

Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H. Nanoscale, 2020, 12: 3535.

[13]

Jiang P, Li Y, Ju T, Cheng W, Xu J, Han K. Chem. Res. Chinese Universities, 2020, 36(2): 307.

[14]

Bolotsky A, Butler D, Dong C, Gerace K, Glavin N R, Muratore C, Robinson J A, Ebrahimi A. ACS Nano, 2019, 13: 9781.

[15]

Rohaizad N, Mayorga-Martinez C C, Sofer Z, Pumera M. ACS Appl. Mater. Interfaces, 2017, 9: 40697.

[16]

Meng Z, Stolz R M, Mendecki L, Mirica K A. Chem. Rev., 2019, 119: 478.

[17]

Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D. Chem. Commun., 2010, 46: 3256.

[18]

Xu J, Jiang H, Shen Y, Li X Z, Wang E G, Meng S. Nat. Commun., 2019, 10: 3971.

[19]

Long M, Tang L, Wang D, Li Y, Shuai Z. ACS Nano, 2011, 5: 2593.

[20]

Zheng Q, Luo G, Liu Q, Quhe R, Zheng J, Tang K, Gao Z, Nagase S, Lu J. Nanoscale, 2012, 4: 3990.

[21]

Srinivasu K, Ghosh S K. J. Phys. Chem. C, 2012, 116: 5951.

[22]

Luo G, Qian X, Liu H, Qin R, Zhou J, Li L, Gao Z, Wang E, Mei W N, Lu J, Li Y, Nagase S. Phys. Rev. B, 2011, 84: 075439.

[23]

Li Y, Xu L, Liu H, Li Y. Chem. Soc. Rev., 2014, 43: 2572.

[24]

Shang H, Zuo Z, Li L, Wang F, Liu H, Li Y, Li Y. Angew Chem. Int. Ed, 2018, 57: 774.

[25]

Chen Y, Li J, Wang F, Guo J, Jiu T, Liu H, Li Y. Nano Energy, 2019, 64: 103932.

[26]

Zhao Y, Yang N, Yao H, Liu D, Song L, Zhu J, Li S, Gu L, Lin K, Wang D. J. Am. Chem. Soc., 2019, 141: 7240.

[27]

Hui L, Xue Y, Yu H, Liu Y, Fang Y, Xing C, Huang B, Li Y. J. Am. Chem. Soc., 2019, 141: 10677.

[28]

Xue Y, Huang B, Yi Y, Guo Y, Zuo Z, Li Y, Jia Z, Liu H, Li Y. Nat. Commun., 2018, 9: 1460.

[29]

Li J, Chen Y, Gao J, Zuo Z, Li Y, Liu H, Li Y. ACS Appl. Mater. Interfaces, 2019, 11: 2591.

[30]

Gao X, Ren H, Zhou J, Du R, Yin C, Liu R, Peng H, Tong L, Liu Z, Zhang J. Chem. Mater., 2017, 29: 5777.

[31]

Xue Z, Yang H, Gao J, Li J, Chen Y, Jia Z, Li Y, Liu H, Yang W, Li Y, Li D. ACS Appl. Mater. Interfaces, 201, 8: 21563.

[32]

Li G, Li Y, Qian X, Liu H, Lin H, Chen N, Li Y. The Journal of Physical Chemistry C, 2011, 115: 2611.

[33]

Zheng Z, Fang H, Liu D, Tan Z, Gao X, Hu W, Peng H, Tong L, Hu W, Zhang J. Adv. Sci., 2017, 4: 1700472.

[34]

Zhang Y, Huang P, Guo J, Shi R, Huang W, Shi Z, Wu L, Zhang F, Gao L, Li C, Zhang X, Xu J, Zhang H. Adv. Mater., 2020, 32: 2001082.

[35]

Wu L, Dong Y, Zhao J, Ma D, Huang W, Zhang Y, Wang Y, Jiang X, Xiang Y, Li J, Feng Y, Xu J, Zhang H. Adv. Mater., 2019, 31: e1807981.

[36]

Guo J, Shi R, Wang R, Wang Y, Zhang F, Wang C, Chen H, Ma C, Wang Z, Ge Y, Song Y, Luo Z, Fan D, Jiang X, Xu J, Zhang H. Laser & Photonics Reviews, 2020, 14: 1900367.

[37]

Qiu H, Xue M, Shen C, Zhang Z, Guo W. Adv. Mater., 2019, 31: e1803772.

[38]

Jiang W, Zhang Z, Wang Q, Dou J, Zhao Y, Ma Y, Liu H, Xu H, Wang Y. Nano Lett., 2019, 19: 4060.

[39]

Li S, Chen Y, Liu H, Wang Y, Liu L, Lv F, Li Y, Wang S. Chem. Mater., 2017, 29: 6087.

[40]

Liu J, Wang L, Shen X, Gao X, Chen Y, Liu H, Liu Y, Yin D, Liu Y, Xu W, Cai R, You M, Guo M, Wang Y, Li J, Li Y, Chen C. Nano Today, 2020, 34: 100907.

[41]

Du Y, Zhou W, Gao J, Pan X, Li Y. Acc. Chem. Res., 2020, 53: 459.

[42]

Gao X, Liu H, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48: 908.

[43]

Huang C, Li Y, Wang N, Xue Y, Zuo Z, Liu H, Li Y. Chem. Rev., 2018, 118: 7744.

[44]

Jia Z, Li Y, Zuo Z, Liu H, Huang C, Li Y. Acc. Chem. Res., 2017, 50: 2470.

[45]

Guo S, Yan H, Wu F, Zhao L, Yu P, Liu H, Li Y, Mao L. Anal. Chem., 2017, 89: 13008.

[46]

Zhao L, Jiang Y, Hao J, Wei H, Zheng W, Mao L. Science China Chemistry, 2019, 62: 1414.

[47]

Guo S, Yu P, Li W, Yi Y, Wu F, Mao L. J. Am. Chem. Soc., 2020, 142: 2074.

[48]

Zhang Y., Xie Q., Xia Z., Gui G., Deng F., J. Electroanal. Chem., 2020, 863

[49]

Wu L, Gao J, Lu X, Huang C, Dhanjai, Chen J. Carbon, 2020, 156: 568.

[50]

Pardo-Yissar V, Katz E, Wasserman J, Willner I. J. Am. Chem. Soc., 2003, 125: 622.

[51]

Luo Z, Qi Q, Zhang L, Zeng R, Su L, Tang D. Anal. Chem., 2019, 91: 4149.

[52]

Shu J, Tang D. Anal. Chem., 2020, 92: 363.

[53]

Li Y, Li X, Meng Y, Hun X. Biosens. Bioelectron., 2019, 130: 269.

[54]

Li X, Li Y, Zhang J, Meng Y, Yu X, Wang X, Hun X. Sensors and Actuators B: Chemical, 2019, 297: 126808.

[55]

Wang H, Deng K, Xiao J, Li C, Zhang S, Li X. Sensors and Actuators B: Chemical, 2020, 304: 127363.

[56]

Wang C, Yu P, Guo S, Mao L, Liu H, Li Y. Chem. Commun., 201, 52: 5629.

[57]

Xiao K, Li J, Wu X, Liu H, Huang C, Li Y. Carbon, 2019, 144: 72.

[58]

Cranford S W, Brommer D B, Buehler M J. Nanoscale, 2012, 4: 7797.

[59]

Wang S S, Liu H B, Kan X N, Wang L, Chen Y H, Su B, Li Y L, Jiang L. Small, 2017, 13: 1602265.

[60]

Yan H, Guo S, Wu F, Yu P, Liu H, Li Y, Mao L. Angew. Chem. Int. Ed., 2018, 57: 3922.

[61]

Liu J, Shen X, Baimanov D, Wang L, Xiao Y, Liu H, Li Y, Gao X, Zhao Y, Chen C. ACS Appl. Mater. Interfaces, 2019, 11: 2647.

[62]

Zhuang X, Mao L, Li Y. Electrochem. Commun., 2017, 83: 96.

[63]

Wang X, Xiong Z, Liu Z, Zhang T. Adv. Mater., 2015, 27: 1370.

[64]

Wang J, Liu G, Jan M R. J. Am. Chem. Soc., 2004, 126: 3010.

[65]

Lu C H, Yang H H, Zhu C L, Chen X, Chen G N. Angew. Chem. Int. Ed., 2009, 48: 4785.

[66]

Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013, 135: 5998.

[67]

Zhang Y, Zheng B, Zhu C, Zhang X, Tan C, Li H, Chen B, Yang J, Chen J, Huang Y, Wang L, Zhang H. Adv. Mater., 2015, 27: 935.

[68]

He S, Song B, Li D, Zhu C, Qi W, Wen Y, Wang L, Song S, Fang H, Fan C. Adv. Funct. Mater., 2010, 20: 453.

[69]

Chen X, Gao P, Guo L, Zhang S. Sci. Rep., 2015, 5: 16720.

[70]

Parvin N, Jin Q, Wei Y, Yu R, Zheng B, Huang L, Zhang Y, Wang L, Zhang H, Gao M, Zhao H, Hu W, Li Y, Wang D. Adv. Mater., 2017, 29: 1606755.

[71]

Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson J A, Ahuja R, Karton A. Carbon, 2020, 163: 213.

[72]

Nagarajan V, Srimathi U, Chandiramouli R. Comput. Theor. Chem., 2018, 1123: 119.

[73]

Chandra S S, Swathi R S. J. Phys. Chem. C, 2014, 118: 4516.

[74]

Chang F, Huang L, Guo C, Xie G, Li J, Diao Q. ACS Appl. Mater. Interfaces, 2019, 11: 35622.

[75]

Dave V P, Ngo T A, Pernestig A K, Tilevik D, Kant K, Nguyen T, Wolff A, Bang D D. Lab. Invest., 2019, 99: 452.

[76]

Liu H., Guo J., Guo M., Wang F., Jin W., Chen C., Li Y., Angew Chem. Int. Ed, 2020, DOI: https://doi.org/10.1002/anie.202006891

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/