Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion

Zhibin Pei , Yun Liu , Da Sun , Zixuan Zhu , Gongming Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 631 -639.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 631 -639. DOI: 10.1007/s40242-020-0180-5
Review

Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion

Author information +
History +
PDF

Abstract

Effectively trapping lithium polysulfide species and accelerating the reaction conversion kinetics are the main strategies to improve the performance of lithium-sulfur(Li-S) batteries. Since the researchers found in 2014 that two-dimensional(2D) phosphorene nanosheets could be exfoliated from the bulk black phosphorus, numerous researches have been devoted to exploring the phosphorene with unique properties for the application in Li-S batteries. In this review, we summarize the recent theoretical and experimental progress of phosphorene for Li-S batteries. Besides, we also introduce the relationship between the interfacial interaction on phosphorene and the performance enhancement of Li-S batteries. Furthermore, future challenges and remaining opportunities for phosphorene in Li-S batteries are finally discussed.

Keywords

Phosphorene / Lithium-sulfur battery / Shuttle effect / Catalytic conversion / Enhanced redox kinetics

Cite this article

Download citation ▾
Zhibin Pei, Yun Liu, Da Sun, Zixuan Zhu, Gongming Wang. Phosphorene: a Potential 2D Material for Highly Efficient Polysulfide Trapping and Conversion. Chemical Research in Chinese Universities, 2020, 36(4): 631-639 DOI:10.1007/s40242-020-0180-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chung S H, Manthiram A. Adv. Mater., 2019, 31(27): 1901125.

[2]

Bruce P G, Freunberger S A, Hardwick L J, Tarascon J M. Nat. Mater., 2011, 11: 19.

[3]

Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle L R, Lu G Q M. J. Mater. Chem. A, 2013, 1(33): 9382.

[4]

Li T, Bai X, Gulzar U, Bai Y J, Capiglia C, Deng W, Zhou X F, Liu Z P, Feng Z F, Proietti Zaccaria R. Adv. Funct. Mater., 2019, 29(32): 1901730.

[5]

Lim W G, Kim S, Jo C, Lee J. Angew. Chem. Int. Ed., 2019, 131: 2.

[6]

Chung S H, Chang C H, Manthiram A. Adv. Funct. Mater., 2018, 28(28): 1801188.

[7]

Wild M, O’Neill L, Zhang T, Purkayastha R, Minton G, Marinescu M, Offer G J. Energy Environ. Sci., 2015, 8(12): 3477.

[8]

Jana M, Xu R, Cheng X B, Yeon J S, Park J M, Huang J Q, Zhang Q, Park H S. Energy Environ. Sci., 2020, 13(4): 1049.

[9]

Li G R, Wang S, Zhang Y N, Li M, Chen Z W, Lu J. Adv. Mater., 2018, 30(22): 19.

[10]

Xiao P T, Sun L X, Liao D K, Agboola P O, Shakir I, Xu Y X. ACS Appl. Mater. Interfaces, 2018, 10(39): 33269.

[11]

Zhang J, Huang H, Bae J, Chung S H, Zhang W K, Manthiram A, Yu G H. Small Methods, 2018, 2(1): 1700279.

[12]

Fu A, Wang C Z, Pei F, Cui J Q, Fang X L, Zheng N F. Small, 2019, 15(10): 21.

[13]

Li C X, Xi Z C, Guo D X, Chen X J, Yin L W. Small, 2018, 14(4): 1701986.

[14]

Wang H Q, Zhang W C, Xu J Z, Guo Z P. Adv. Funct. Mater., 2018, 28(38): 14.

[15]

Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Adv. Sci., 2018, 5(1): 1700270.

[16]

He J R, Manthiram A. Energy Storage Mater., 2019, 20: 55.

[17]

Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Adv. Energy Mater., 2019, 9(1): 1802768.

[18]

Song Y Z, Cai W L, Kong L, Cai J S, Zhang Q, Sun J Y. Adv. Energy Mater., 2019, 10(11): 1901075.

[19]

Yang Y, Zheng G Y, Cui Y. Chem. Soc. Rev., 2013, 42(7): 3018.

[20]

Zhang Q F, Wang Y P, Seh Z W, Fu Z H, Zhang R F, Cui Y. Nano Lett., 2015, 15(6): 3780.

[21]

Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M. Nat. Commun., 201, 7: 11203.

[22]

Yu M L, Zhou S, Wang Z Y, Wang Y W, Zhang N, Wang S, Zhao J J, Qiu J S. Energy Storage Mater., 2019, 20: 98.

[23]

Wang Y K, Zhang R F, Chen J, Wu H, Lu S Y, Wang K, Li H L, Harris C J, Xi K, Kumar R V, Ding S J. Adv. Energy Mater., 2019, 9(24): 1900953.

[24]

Lin H B, Yang L Q, Jiang X, Li G C, Zhang T R, Yao Q F, Zheng G Y W, Lee J Y. Energy Environ. Sci., 2017, 10(6): 1476.

[25]

Xiao P T, Bu F X, Yang G H, Zhang Y, Xu Y X. Adv. Mater., 2017, 29(40): 1703324.

[26]

He Y B, Bai S Y, Chang Z, Li Q, Qiao Y, Zhou H S. J. Mater. Chem. A, 2018, 6(19): 9032.

[27]

Zhang L L, Wang Y J, Niu Z Q, Chen J. Carbon, 2019, 141: 400.

[28]

Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z B, Ma X L, Gupta T, Singh C V, Ren W C, Cheng H-M, Koratkar N. Adv. Mater., 2017, 29(2): 1602734.

[29]

Zhang J, Shi Y, Ding Y H, Peng L L, Zhang W K, Yu G H. Adv. Energy Mater., 2017, 7(14): 1602876.

[30]

Wang T, Zhu J, Wei Z X, Yang H G, Ma Z L, Ma R F, Zhou J, Yang Y H, Peng L L, Fei H L, Lu B A, Duan X F. Nano Lett., 2019, 19(7): 4384.

[31]

Kamphaus E P, Balbuena P B. J. Phys. Chem. C, 201, 120(8): 4296.

[32]

Lin C, Qu L B, Li J T, Cai Z Y, Liu H Y, He P, Xu X, Mai L Q. Nano Res., 2019, 12(1): 205.

[33]

Pu J, Shen Z H, Zheng J X, Wu W L, Zhu C, Zhou Q W, Zhang H G, Pan F. Nano Energy, 2017, 37: 7.

[34]

Majumder S, Shao M H, Deng Y F, Chen G H. J. Power Sources, 2019, 431: 93.

[35]

Liu Y S, Bai Y L, Liu X, Ma C, Wu X Y, Wei X, Wang Z, Wang K X, Chen J S. Chem. Eng. J., 2019, 378: 8.

[36]

Li Z H, He Q, Xu X, Zhao Y, Liu X W, Zhou C, Ai D, Xia L X, Mai L Q. Adv. Mater., 2018, 30(45): 1804089.

[37]

Zhang L L, Chen X, Wan F, Niu Z Q, Wang Y J, Zhang Q, Chen J. ACS Nano, 2018, 12(9): 9578.

[38]

Zhou J B, Liu X J, Zhu L Q, Zhou J, Guan Y, Chen L, Niu S W, Cai J Y, Sun D, Zhu Y C, Du J, Wang G M, Qian Y T. Joule, 2018, 2(12): 2681.

[39]

Seh Z W, Zhang Q F, Li W Y, Zheng G Y, Yao H B, Cui Y. Chem. Sci., 2013, 4(9): 3673.

[40]

Zheng G Y, Zhang Q F, Cha J J, Yang Y, Li W Y, Seh Z W, Cui Y. Nano Lett., 2013, 13(3): 1265.

[41]

Zhu J D, Zhu P, Yan C Y, Dong X, Zhang X W. Prog. Polym. Sci., 2019, 90: 118.

[42]

Zhou W D, Yu Y C, Chen H, DiSalvo F J, Abruña H D. J. Am. Chem. Soc., 2013, 135(44): 16736.

[43]

Hu H, Cheng H Y, Liu Z F, Li G J, Zhu Q C, Yu Y. Nano Lett., 2015, 15(8): 5116.

[44]

Liu B, Fang R Y, Xie D, Zhang W K, Huang H, Xia Y, Wang X L, Xia X H, Tu J P. Energy Environ. Mater., 2018, 1(4): 196.

[45]

Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B. Nat. Nanotech., 2014, 9(5): 372.

[46]

Shifa T A, Wang F M, Liu Y, He J. Adv. Mater., 2019, 31(45): 1804828.

[47]

Li W F, Yang Y M, Zhang G, Zhang Y W. Nano Lett., 2015, 15(3): 1691.

[48]

Wei Q, Peng X H. Appl. Phys. Lett., 2014, 104(25): 5.

[49]

Pang J B, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z F, Rummeli M H. Adv. Energy Mater., 2018, 8(8): 43.

[50]

Luo Y R. Comprehensive Handbook of Chemical Bond Energies, 2007, Boca Raton: CRC Press

[51]

Dhanabalan S C, Ponraj J S, Guo Z N, Li S J, Bao Q L, Zhang H. Adv. Sci., 2017, 4(6): 1600305.

[52]

Li J S, Guo C X, Li C M. ChemSusChem, 2020, 13(6): 1047.

[53]

Castellanos-Gomez A. J. Phys. Chem. Lett., 2015, 6(23): 4873.

[54]

Schusteritsch G, Uhrin M, Pickard C J. Nano Lett., 201, 16(5): 2975.

[55]

Tian H Z, Seh Z W, Yan K, Fu Z H, Tang P, Lu Y Y, Zhang R F, Legut D, Cui Y, Zhang Q F. Adv. Energy Mater., 2017, 7(13): 1602528.

[56]

Wu J X, Mao N N, Xie L M, Xu H, Zhang J. Angew. Chem. Int. Edit., 2015, 54(8): 2366.

[57]

Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8(4): 4033.

[58]

Kang J S, Ke M, Hu Y J. Nano Lett., 2017, 17(3): 1431.

[59]

Fei R X, Yang L. Nano Lett., 2014, 14(5): 2884.

[60]

Mehboudi M, Dorio A M, Zhu W J, van der Zande A, Churchill H O H, Pacheco-Sanjuan A A, Harriss E O, Kumar P, Barraza-Lopez S. Nano Lett., 201, 16(3): 1704.

[61]

Lee C, Wei X D, Kysar J W, Hone J. Science, 2008, 321(5887): 385.

[62]

Ryder C R, Wood J D, Wells S A, Hersam M C. ACS Nano, 201, 10(4): 3900.

[63]

Seo D K, Hoffmann R. J. Solid State Chem., 1999, 147(1): 26.

[64]

Kuntz K L, Wells R A, Hu J, Yang T, Dong B J, Guo H H, Woomer A H, Druffel D L, Alabanza A, Tománek D, Warren S C. ACS Appl. Mater. Interfaces, 2017, 9(10): 9126.

[65]

Cai Y Q, Ke Q Q, Zhang G, Zhang Y W. J. Phys. Chem. C, 2015, 119(6): 3102.

[66]

He Y Y, Xia F F, Shao Z B, Zhao J W, Jie J S. J. Phys. Chem. Lett., 2015, 6(23): 4701.

[67]

Zhao J X, Yang Y G, Katiyar R S, Chen Z F. J. Mater. Chem. A, 201, 4(16): 6124.

[68]

Qiao J S, Kong X H, Hu Z X, Yang F, Ji W. Nat. Commun., 2014, 5(1): 4475.

[69]

Ling X, Wang H, Huang S X, Xia F N, Dresselhaus M S. Proc. Natl. Acad. Sci. USA, 2015, 112(15): 4523.

[70]

Tran V, Soklaski R, Liang Y F, Yang L. Phys. Rev. B, 2014, 89(23): 235319.

[71]

Zhang G W, Huang S Y, Chaves A, Song C Y, Özçelik V O, Low T, Yan H G. Nat. Commun., 2017, 8(1): 14071.

[72]

Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S. Science, 2015, 349(6249): 723.

[73]

Zhang X O, Li Q F, Xu B, Wan B, Yin J, Wan X G. Phys. Lett. A, 201, 380(4): 614.

[74]

Peng X H, Wei Q, Copple A. Phys. Rev. B, 2014, 90(8): 085402.

[75]

Deng B C, Tran V, Xie Y J, Jiang H, Li C, Guo Q S, Wang X M, Tian H, Koester S J, Wang H, Cha J J, Xia Q F, Yang L, Xia F N. Nat. Commun., 2017, 8(1): 14474.

[76]

Whitney W S, Sherrott M C, Jariwala D, Lin W, Bechtel H A, Rossman G R, Atwater H A. Nano Lett., 2017, 17(1): 78.

[77]

Ren X L, Lian P C, Xie D L, Yang Y, Mei Y, Huang X R, Wang Z R, Yin X T. J. Mater. Sci., 2017, 52(17): 10364.

[78]

Kang J, Wells S A, Wood J D, Lee J H, Liu X L, Ryder C R, Zhu J, Guest J R, Husko C A, Hersam M C. Proc. Natl. Acad. Sci. USA, 201, 113(42): 11688.

[79]

Zhao W C, Xue Z M, Wang J F, Jiang J Y, Zhao X H, Mu T C. ACS Appl. Mater. Interfaces, 2015, 7(50): 27608.

[80]

Pei J J, Gai X, Yang J, Wang X B, Yu Z F, Choi D Y, Luther D B, Lu Y R. Nat. Commun., 201, 7(1): 10450.

[81]

Lu W L, Nan H Y, Hong J H, Chen Y M, Zhu C, Liang Z, Ma X Y, Ni Z H, Jin C H, Zhang Z. Nano Res., 2014, 7: 853.

[82]

Smith J B, Hagaman D, Ji H F. Nanotechnology, 201, 27(21): 8.

[83]

Yang Z B, Hao J H, Yuan S G, Lin S H, Yau H M, Dai J Y, Lau S P. Adv. Mater., 2015, 27(25): 3748.

[84]

Li C, Wu Y, Deng B C, Xie Y J, Guo Q S, Yuan S F, Chen X L, Bhuiyan M, Wu Z S, Watanabe K, Taniguchi T, Wang H L, Cha J J, Snure M, Fei Y W, Xia F N. Adv. Mater., 2018, 30(6): 1703748.

[85]

Xu Z L, Lin S H, Onofrio N, Zhou L M, Shi F Y, Lu W, Kang K, Zhang Q, Lau S P. Nat. Commun., 2018, 9: 11.

[86]

Sun J, Sun Y M, Pasta M, Zhou G M, Li Y Z, Liu W, Xiong F, Cui Y. Adv. Mater., 201, 28(44): 9797.

[87]

Lin H, Yang D D, Lou N, Wang A L, Zhu S G, Li H Z. J. Appl. Phys., 2019, 125(9): 10.

[88]

Haseeb H H, Li Y, Ayub S, Fang Q L, Yu L J, Xu K W, Ma F. J. Phys. Chem. C, 2020, 124(5): 2739.

[89]

Zhang Q, Xiao Y H, Fu Y Y, Li C, Zhang X F, Yan J, Liu J Q, Wu Y C. Appl. Surf. Sci., 2020, 512: 145639.

[90]

Li Q, Zhou Q H, Niu X H, Zhao Y H, Chen Q, Wang J L. J. Phys. Chem. Lett., 201, 7(22): 4540.

[91]

Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X L, Lauhon L J, Marks T J, Hersam M C. Nano Lett., 2014, 14(12): 6964.

[92]

Chowdhury C, Karmakar S, Datta A. ACS Energy Letters, 201, 1(1): 253.

[93]

Tao Y P, Huang T, Ding C X, Yu F, Tan D M, Wan F X, Xie Q J, Yao S Z. Appl. Mater. Today, 2019, 15: 18.

[94]

Lin S H, Li Y Y, Qian J S, Lau S P. Mater. Today Energy, 2019, 12: 1.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/