Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion

Tian Sun , Congxu Wang , Yuxi Xu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 640 -647.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 640 -647. DOI: 10.1007/s40242-020-0179-y
Review

Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion

Author information +
History +
PDF

Abstract

Two-dimensional crystalline covalent triazine frameworks(CTFs) have received much attention because of their unique triazine structure, which endows CTFs with high thermal and chemical stability, high proportion of nitrogen and permanent porosity. Based on this unique structure characteristic, CTFs have shown great potential in energy storage and conversion due to the intrinsically strong conjugated structure, delocalized electron and rich active sites. However, charge carrier(electron, hole or ion) transport can’t reach the deep active sites and charge diffusion was impeded by defects in bulk CTFs. Hence, to break through this barrier, increasing attention has been paid to get few layered CTFs or CTFs nanosheets in order to shorten the pathways of charge diffusion and expose more active sites. This review summarizes the synthetic methodologies of CTFs nanosheets and the potential application in photocatalytic and electrochemical energy storage and conversion.

Keywords

Bulk crystalline covalent triazine framework(CTF) / CTFs nanosheet / Synthesis / Photocatalysis / Electrochemical energy storage

Cite this article

Download citation ▾
Tian Sun, Congxu Wang, Yuxi Xu. Covalent Triazine Framework Nanosheets for Efficient Energy Storage and Conversion. Chemical Research in Chinese Universities, 2020, 36(4): 640-647 DOI:10.1007/s40242-020-0179-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2: 1.

[2]

Naguib M, Presser V, Tallman D, Lu J, Hultman L, Gogotsi Y, Bsoum M W. J. Am. Chem. Soc., 2011, 94: 4556.

[3]

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23: 4248.

[4]

Voiry D, Mohite A, Chhowalla M. Chem. Soc. Rev., 2015, 44: 2702.

[5]

Wilson J A, Yoffe A D. Adv. Phys., 1969, 18: 193.

[6]

Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. J. Phys. Chem. C., 2011, 115: 24586.

[7]

Hafeez M, Gan L, Li H, Ma Y, Zhai T. Adv. Mater., 201, 28: 8296.

[8]

Miller T S, Jorge A B, Suter T M, Sella A, Corà F, McMillan P F. Phys. Chem. Chem. Phys., 2017, 19: 15613.

[9]

Watanabe K, Taniguchi T, Kanda H. Nat. Mater., 2004, 3: 404.

[10]

Zheng Y, Liu J, Liang J, Jaroniec M, Qiao S Z. Energy Environ. Sci., 2012, 5: 6717.

[11]

Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Soc. Rev., 201, 116: 7159.

[12]

Rodríguez-San-Miguel D, Montoro C, Zamora F. Chem. Soc. Rev., 2020, 49: 2291.

[13]

Sakaushi K, Antonietti M. Acc. Chem. Res., 2015, 48: 1591.

[14]

Zhu X, Tian C, Veith G M, Abney C W, Dehaudt J, Dai S. J. Am. Chem. Soc., 201, 138: 11497.

[15]

Zhou T, Zhao Y, Choi J W, Coskun A. Angew. Chem. Int. Ed., 2019, 58: 16795.

[16]

Liu M, Guo L, Jin S, Tan B. J. Mater. Chem. A, 2019, 7: 5153.

[17]

Ghosh I, Khamrai J, Savateev A, Shlapakov N, Antonietti M, Knig B. Science, 2019, 365: 360.

[18]

Zhao Y, Xin Y, Teng B, Zhang T, Yu H. Energy & Environmental Science, 2013, 61: 3684.

[19]

Su L, Zhi Z, Xiong Y. Nanoscale, 2018, 10: 20120.

[20]

Kuhn P, Antonietti M, Thomas A. Agew.Chem. Int. Ed., 2008, 47: 3450.

[21]

Bojdys M, Jeromenok J, Thomas A, Antonietti M. Adv. Mater., 2010, 22: 2202.

[22]

Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Chem. Mater., 2013, 25: 1542.

[23]

Young S, Mahmood J, Noh H J, Seo M, Jung S M, Shin H, Im Y, Jeon Y, Baek B. Angew. Chem., Int. Ed., 2018, 57: 8438.

[24]

Zhang S, Cheng G, Guo L, Wang N, Tan B, Jin S. Angew. Chem. Int. Ed., 2020, 59: 6007.

[25]

Wang K, Yang L M, Wang X, Guo L, Cheng G, Zhang C, Jin S, Tan B, Cooper A. Angew. Chem. Int. Ed., 2017, 56: 14149.

[26]

Li L, Fang W, Zhang P, Bi J, He Y, Wang J, Su W. J. Mater. Chem. A., 201, 32: 12402.

[27]

Erik T, Sven G, Tilo L, Lars B. Angew. Chem. Int. Ed., 2017, 56: 6859.

[28]

Li Z, Han Y, Guo Y, Xu S, Chen F, Ye L, Luo Z H, Liu X, Zhou H, Zhao T. RSC Adv., 2017, 7: 45818.

[29]

Zhou T H, Zhao Y, Jang W C, Ali C. Angew. Chem. Int. Ed., 2019, 131: 16951.

[30]

Zhang Y, Jin S. Polymers, 2019, 11: 31.

[31]

Kovtyukhova N I, Wang Y, Berkdemi A, Cruz-Silva R, Terrones M, Crespi V H, Mallouk T E. Nat. Chem., 2014, 611: 957.

[32]

Zhu Y, Qiao M, Peng W, Li Y, Zhang G, Zhang F, Li Y, Fan X. J. Mater. Chem. A, 2017, 5: 9272.

[33]

Zhu Y, Chen X, Cao Y, Peng W, Li Y, Zhang G, Zhang F, Fan X. Chem. Commun., 2019, 55: 1434.

[34]

Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. J. Am. Chem. Soc., 2018, 139: 11666.

[35]

Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. Adv. Mater., 2018, 30: 1705401.

[36]

Yin C, Zhang Z, Zhou J, Wang Y. ACS Appl. Mater. Interfaces, 2020, 12: 18944.

[37]

Zhang H, Sun W, Chen X, Wang Y. ACS Nano, 2019, 13: 14252.

[38]

Zhao R, Niu C, Aboud M, Shakir I, Yu C, Xu Y. Sci. China Chem., 2020, 63: 966.

[39]

Ball B, Chakravarty C, Sarka P. J. Phys. Chem. C, 2019, 123: 50.

[40]

Rahman M, Kibria M G, Mullins C B. Chem. Soc. Rev., 2020, 49: 1887.

[41]

Wang Z, Li C, Domen K. Chem. Soc. Rev., 2019, 48: 2109.

[42]

Zhang H, Zhang P, Qiu M, Dong J, Zhang Y, Lou X. Adv. Mater., 2019, 31: 1804.

[43]

Wang X, Zhang X, Zhou W, Liu L, Ye J, Wang D. Nano Energy, 2019, 62: 250.

[44]

Chen L, Wang L, Wan Y, Zhang Y, Qi Z, Wu X, Xu H. Adv. Mater., 2020, 32: 1904.

[45]

Wang Y, Du P, Pan H, Fu L, Zhang Y, Chen J, Du Y, Tang N, Liu G. Adv. Mater., 2019, 31: 1807.

[46]

Huang W, Wang Z J, Ma B C, Ghasimi S, Gehrig D, Laquai F, Landfester K, Zhang K A. J. Mater. Chem. A, 201, 4: 7555.

[47]

Kuecken S, Acharjya A, Zhi L, Schwarze M, Schomäcker R, Thomas A. Chem. Commun., 2017, 53: 5854.

[48]

Liu M, Huang Q, Wang S, Li Z, Li B, Jin S, Tan B. Angew. Chem. Int. Ed., 2018, 5: 11968.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/