Electrically Stimulated Band Alignment Transit in Black Phosphorus/β-Ga2O3 Heterostructure Dual-band Photodetector

Chang Li , Liu Xie , Tao He , Yan Zhang , Zhuo Dong , Zeyuan Yang , Xiaodong Zhang , Zhongchang Wang , Kai Zhang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 703 -708.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 703 -708. DOI: 10.1007/s40242-020-0177-0
Article

Electrically Stimulated Band Alignment Transit in Black Phosphorus/β-Ga2O3 Heterostructure Dual-band Photodetector

Author information +
History +
PDF

Abstract

In recent decades, dual-band photodetectors have received widespread attention due to better target identification, which are considered as the development trend of next generation photodetectors. However, the traditional dual-band photodetectors based on heteroepitaxial growth, superlattice and multiple quantum well structures are limited by complex fabrication process and low integration. Herein, we report a UV/IR dual-band photodetector by integrating ultra-wide gap β-Ga2O3 and narrow-gap black phosphorous(BP) nanoflakes. A vertical van der Waals (vdW) heterostructure is formed between BP and β-Ga2O3 by mechanically exfoliated method integrated without the requirement of lattice match. The heterostructure devices show excellent rectification characteristics with high rectifying ratio of ca. 106 and low reverse current around pA. Moreover, the device displays obvious photoresponse under UV and IR irradiations with responsivities of 0.87 and 2.15 mA/W, respectively. We also explore the band alignment transit within the heterostructure photodetector at different bias voltages. This work paves the way for fabricating novel dual-band photodetectors by utilizing 2D materials.

Keywords

Black phosphorous / β-Gallium oxide / van der Waals heterostructure / Dual-band photodetector

Cite this article

Download citation ▾
Chang Li, Liu Xie, Tao He, Yan Zhang, Zhuo Dong, Zeyuan Yang, Xiaodong Zhang, Zhongchang Wang, Kai Zhang. Electrically Stimulated Band Alignment Transit in Black Phosphorus/β-Ga2O3 Heterostructure Dual-band Photodetector. Chemical Research in Chinese Universities, 2020, 36(4): 703-708 DOI:10.1007/s40242-020-0177-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee M K, Chu C H, Wang Y H, Sze S M. Opt. Lett., 2001, 26: 160.

[2]

Rogalski A. Rep. Prog. Phys., 2005, 68: 2267.

[3]

Grein C H, Young P M, Flatte M E, Ehrenreich H. J. Appl. Phys., 1995, 78: 7143.

[4]

Dai M, Chen H, Feng R, Feng W, Hu Y, Yang H, Liu G, Chen X, Zhang J, Xu C Y, Hu P. ACS Nano, 2018, 12: 8739.

[5]

Wang P, Liu S, Luo W, Fang H, Gong F, Guo N, Chen Z G, Zou J, Huang Y, Zhou X, Wang J, Chen X, Lu W, Xiu F, Hu W. Adv. Mater., 2017, 29: 1604439.

[6]

Xu X, Deng W, Zhang X, Huang L, Wang W, Jia R, Wu D, Zhang X, Jie J, Lee S T. ACS Nano, 2019, 13: 5910.

[7]

Haddadi A, Dehzangi A, Chevallier R, Adhikary S, Razeghi M. Sci. Rep., 2017, 7: 3379.

[8]

Su L, Chen H, Xu X, Fang X. Laser Photonics Rev., 2017, 11: 1700222.

[9]

Li L., Chen H., Fang Z., Meng X., Zuo C., Lv M., Tian Y., Fang Y., Xiao Z., Shan C., Xiao Z., Jin Z., Shen G., Shen L., Ding L., Adv. Mater., 2020, 1907257

[10]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666.

[11]

Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Nature Nanotech., 2011, 6: 147.

[12]

Li L, Yu Y, Ye G, Ge Q, Ou X, Wu H, Feng D, Chen X, Zhang Y. Nature Nanotech., 2014, 9: 372.

[13]

Geim A K, Grigorieva I V. Nature, 2013, 499: 419.

[14]

Hou N, Konstantatos G. Adv. Mater., 2018, 30: 1801164.

[15]

Long M, Wang P, Fang H, Hu W. Adv. Funct. Mater., 2019, 29: 1803807.

[16]

Fang J, Zhou Z, Xiao M, Lou Z, Wei Z, Shen G. InfoMat, 2019, 1: 27.

[17]

Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A. Nature Nanotech., 2013, 8: 497.

[18]

Lou Z, Zeng L, Wang Y, Wu D, Xu T, Shi Z, Tian Y, Li X, Tsang Y H. Opt. Lett., 2017, 42: 3335.

[19]

Deng J, Zong L, Bao W, Zhu M, Liao F, Guo Z, Xie Y, Lu B, Wan J, Zhu J, Peng R, Chen Y. Adv. Opt. Mater., 2019, 7: 1901039.

[20]

Tong J, Tobing L Y M, Luo Y, Zhang D, Zhang D. Sci. Rep., 2018, 8: 1548.

[21]

Huang Z, Jiang Y, Han Q, Yang M, Han J, Wang F, Luo M, Li Q, Zhu H, Liu X, Guo J, Wang J. Nanotechnology, 2020, 31: 064001.

[22]

He T, Zhang X, Ding X, Sun C, Zhao Y, Yu Q, Ning J, Wang R, Yu G, Lu S, Zhang K, Zhang X, Zhang B. Adv. Opt. Mater., 2019, 7: 1801563.

[23]

Kong W, Wu G, Wang K, Zhang T, Zou Y, Wang D, Luo L. Adv. Mater., 201, 28: 10725.

[24]

Feng W, Wang X, Zhang J, Wang L, Zheng W, Hu P, Cao W, Yang B. J. Mater. Chem. C, 2014, 2: 3254.

[25]

Barman S K, Huda M N. Phys. Status Solidi Rapid Res. Lett., 2019, 13: 1800554.

[26]

Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J, Castellanos-Gomez A. Nano Lett., 2014, 14: 3347.

[27]

Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F. Nat. Commun., 2017, 8: 1672.

[28]

Youngblood N, Chen C, Koester S J, Li M. Nature Photon., 2015, 9: 247.

[29]

He T, Li C, Zhang X, Ma Y, Cao X, Shi X, Sun C, Li J, Song L, Zeng C, Zhang K, Zhang X, Zhang B. Phys. Status Solidi A, 2020, 217: 1900861.

[30]

Kim J, Mastro M A, Tadjer M J, Kim J. ACS Appl. Mater. Interfaces, 2018, 10: 29724.

[31]

Yang J, Yu W, Pan Z, Yu Q, Yin Q, Guo L, Zhao Y, Sun T, Bao Q, Zhang K. Small, 2018, 14: 1802598.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/