Heterostructured Nitrogen and Sulfur co-doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity

Zeshuo Meng , Bo Zhou , Jian Xu , Yaxin Li , Xiaoying Hu , Hongwei Tian

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1045 -1052.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1045 -1052. DOI: 10.1007/s40242-020-0175-2
Article

Heterostructured Nitrogen and Sulfur co-doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity

Author information +
History +
PDF

Abstract

Conventional titanium dioxide(TiO2) photocatalyst could absorb only ultraviolet light due to its wide bandgap. In this paper, black TiO2 with narrow bandgap was prepared by introducing oxygen vacancies. Meanwhile, nitrogen(N) and sulfur(S) elements were doped to further broaden the visible light response range of TiO2(NS-BT), and then heterostructured N,S-doped black TiO2/g-C3N4(CN/NS-BT) was successfully constructed by easily accessible route. The formation of CN/NS-BT heterojunction structure increased the generation and separation efficiency of photogenerated electron-hole pairs, as well as accelerated the transfer rate of the carriers. The as-prepared CN/NS-BT exhibited excellent photocatalytic performance towards the degradation of Rhodamine B(RhB) under visible light irradiation with satisfactory stability. The apparent reaction rate constant of CN/NS-BT(0.0079) was 15.8-fold higher than that of commercial P25(0.0005). The structure, morphology, chemical composition and optical properties of the as-prepared CN/NS-BT were characterized by various analytical methods, and possible photocatalytic enhancement mechanism was proposed. Overall, CN/NS-BT composites look promising as photocatalytic material for future environmental treatment.

Keywords

Black TiO2 / g-C3N4 / N, S doping / Heterostructure photocatalyst / Visible light photodegradation

Cite this article

Download citation ▾
Zeshuo Meng, Bo Zhou, Jian Xu, Yaxin Li, Xiaoying Hu, Hongwei Tian. Heterostructured Nitrogen and Sulfur co-doped Black TiO2/g-C3N4 Photocatalyst with Enhanced Photocatalytic Activity. Chemical Research in Chinese Universities, 2020, 36(6): 1045-1052 DOI:10.1007/s40242-020-0175-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoffman M R, Martin S T, Choi W, Bahnemann D W. Chem. Rev., 1995, 95: 69.

[2]

Tran P D, Wong L H, Barber J, Loo J S C. Energy Environ. Sci., 2012, 5: 5902.

[3]

Zhang N, Zhang Y, Xu Y J. Nanoscale, 2012, 4: 5792.

[4]

Li Y X, Hong H T, Xue X, Zhang Z, Tian H W. Chemistry Select, 2019, 18: 5222.

[5]

Tang H, Huang H, Wang X S, Wu K Q, Tang G G, Li C S. Appl. Surf. Sci., 201, 379: 296.

[6]

Liu M, Xue X, Yu S S, Wang X Y, Hu X Y, Tian H W, Chen H, Zheng W T. Sci. Rep., 2017, 7: 3637.

[7]

Li S S, Wang W L, Li Y D. Appl. Catal. B: Environ., 2019, 254: 145.

[8]

Fujishima A, Honda K. Nature, 1972, 238: 37.

[9]

Chen J, Ollis D F, Rulkens W H, Bruning H. Water Res., 1999, 33: 669.

[10]

Gupta S M, Tripathi M. Chin. Sci. Bull., 2011, 56: 1639.

[11]

Xia X H, Liang Y, Wang Z, Fan J, Luo Y S, Jia Z J. Mater. Res. Bull., 2008, 43: 2187.

[12]

Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2008, 8: 76.

[13]

Tian H W, Liu M, Zheng W T. Appl. Catal. B: Environ., 2018, 225: 468.

[14]

Wang Y Y, Sun L J, Raziq F. Adv. Energy Mater., 2018, 8: 1701580.

[15]

Li X B, Xiong J, Huang J T, Feng Z J, Luo J M. J. Alloys Compd., 2019, 774: 768.

[16]

Li X B, Xiong J, Xu Y, Feng Z J, Huang J T. Chinese J. Catal., 2019, 40: 424.

[17]

Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 201, 116: 7159.

[18]

Shen K, Xue X, Wang X Y, Hu X Y, Tian H W, Zheng W T. RSC Adv., 2017, 7: 23319.

[19]

Montoya A T, Gillan E G. ACS Omega, 2018, 3: 2947.

[20]

Tian H W, Wan C X, Xue X, Hu X Y, Wang X Y. Catalysts, 2017, 7: 156.

[21]

Zhou B, Hong H T, Zhang H F, Yu S S, Tian H W. J. Chem. Tech. Biotech., 2019, 94: 3806.

[22]

Tian H W, Shen K, Hu X Y, Qiao L, Zheng W T. J. Alloys Compd., 2017, 691: 369.

[23]

Chen X, Liu L, Yu P Y, Mao S S. Science, 2011, 331: 746.

[24]

Lin T, Yang C, Wang Z, Yin H, X, Huang F, Lin J, Xie X, Jiang M. Energy Environ. Sci., 2014, 7: 967.

[25]

Jedsukontorn T, Ueno T, Saito N, Hunsom M. J. Alloys Compd., 2017, 726: 567.

[26]

Xiang Q, Yu J, Jaroniec M. Chem. Soc. Rev., 2012, 41: 782.

[27]

Yan H, Tian X, Pang Y, Feng B, Duan K, Zhou Z, Weng J, Wang J. RSC Adv., 201, 6: 102444.

[28]

Hu S, Ma L, Li F, Fan Z, Wang Q, Bai J, Kang X, Wu G. RSC Adv., 2015, 5: 90750.

[29]

Tauc J. Mater. Res. Bull., 1970, 5: 721.

[30]

He R, Zhou J, Fu H, Zhang S, Jiang C. Appl. Surf. Sci., 2018, 430: 273.

[31]

Cui L, Ding X, Wang Y, Shi H, Huang L, Zuo Y, Kang S. Appl. Surf. Sci., 2017, 391: 202.

[32]

Wang Y, Yang W, Chen X, Wang J, Zhu Y. Appl. Catal. B: Environ., 2018, 220: 337.

[33]

Zhou T T, Zhao F H, Cui Y Q, Chen L X, Yan J S, Wang X X, Long Y Z. Polymers, 2019, 12(1): 55.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/