Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light

Pengfei Zhang , Huan Liu , Haiou Liang , Jie Bai , Chunping Li

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1227 -1233.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1227 -1233. DOI: 10.1007/s40242-020-0170-7
Article

Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light

Author information +
History +
PDF

Abstract

It is highly desirable to exploit semiconductor materials with high photocatalytic degradation activity, especially bismuth oxyhalide semiconductor photocatalysts with special layered structure and suitable bandgap width. The low utilization rate of visible light and high recombination rate of photogenerated electron-hole of BiOI photocatalyst severely restrict its development. Herein, a heterojunction photocatalyst of α-Bi2O3-BiOI hollow nanotube was prepared by electrospinning method, solvothermal method and ion-exchange method. The α-Bi2O3-BiOI(BB-4, the stirring time of Bi2O3 in KI solution was 4 h) exhibited the best photocatalytic performance towards degrading the tetracycline hydrochloride(TC) solution, which could remove 85% of TC(10 mg/L) in 2 h under visible light irradiation. The estimated k TC of α-Bi2O3-BiOI(BB-4) was ca. 3.9 and 1.8 times as much as that of α-Bi2O3 and pure BiOI, respectively. It indicated that the formation of α-Bi2O3-BiOI heterojunction can significantly improve the separation efficiency of photogenerated electron-hole pairs, therefore the photocatalytic ability was enhanced. Furthermore, a corresponding photocatalytic mechanism was proposed that ·O2 radical and holes are the main active components in the photodegradation through trapping experiment.

Keywords

BiOI / Bi2O3 / Heterojunction / Electrons-holes separation / Photodegradation

Cite this article

Download citation ▾
Pengfei Zhang, Huan Liu, Haiou Liang, Jie Bai, Chunping Li. Enhanced Charge Separation of α-Bi2O3-BiOI Hollow Nanotube for Photodegradation Antibiotic Under Visible Light. Chemical Research in Chinese Universities, 2020, 36(6): 1227-1233 DOI:10.1007/s40242-020-0170-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qu X F, Yi Y D, Qiao F Y, Liu M H, Wang X R, Yang R, Meng H H, Shi L, Du F L. Ceramics International, 2018, 44: 1348.

[2]

Janitabar D S, RcMahjoub A, Bayat A. International Journal of Nano Dimension, 201, 45: 1254.

[3]

Michal R, Dworniczek E, Caplovicova M, Monfort O, Lianos P, Caplovic L, Plesch G. Applied Surface Science, 201, 371: 538.

[4]

Sun X M, Lu J, Wu J, Guan D Y, Liu Q Z, Yan N Q. Journal of Colloid and Interface Science, 2019, 546: 32.

[5]

Wang Q Y, Liu Z Y, Feng H, Jin R C, Zhang S H, Gao S M. Ceramics International, 2019, 45: 3995.

[6]

Cai L, Yao J, Yao J W, Li J B, Zhang Y F, Wei Y. Journal of Alloys and Compounds, 2019, 783: 300.

[7]

Ravensbergen J, Abdi F F, van Santen J H, Frese R N. Journal of Physical Chemistry C, 2014, 118: 27793.

[8]

Ma Y F, Jiang H Q, Zhang X C, Xing J B, Guan Y S. Ceramics International, 2014, 40: 16485.

[9]

Hu S W, Yang L W, Tian Y, Wei X L, Ding J W, Zhong J X, Chu P K. Applied Catalysis B: Environmental, 2015, 163: 611.

[10]

Zhang M, Bai X J, Liu D, Wang J, Zhu Y F. Applied Catalysis B: Environmental, 2015, 164: 77.

[11]

Wang X W, Zhang Y, Zhou C X, Huo D Z. Applied Catalysis B: Environmental, 2020, 268: 118390.

[12]

Wei X X, Cui H T, Guo S Q, Zhao L F, Li W. Journal of Hazardous Materials, 2013, 263: 650.

[13]

Sun D F, Li J P, He L, Zhao B. CrystEngComm, 2014, 16: 7564.

[14]

Chai S Y, Kim Y J, Jung M H, Chakraborty A K, Jung D, Lee W I. Journal of Catalysis, 2009, 262: 144.

[15]

Ren L Z, Zhang D E, Hao X Y, Xiao X, Jiang Y X, Gong J Y, Zhang F, Zhang X B, Tong Z W. Materials Research Bulletin, 2017, 94: 183.

[16]

Wang Q, Li Y P, Huang L Y, Zhang F, Wang H, Wang C B, Zhang Y R, Xie M, Li H M. Applied Surface Science, 2019, 497: 143753.

[17]

Zhang G Q, Ji S, Zhang Y F, Wei Y. Solid State Communications, 2017, 259: 34.

[18]

Lv J X, Liu X M, Li P C, Jin W, Xu J, Zhao Y P. Science of The Total Environment, 2019, 669: 194.

[19]

Zhao M G, Shang J H, Qu H Y, Gao R J, Li H, Chen S G. Analytica Chimica Acta, 2020, 1095: 93.

[20]

Wang Q, Wu H, Gao Q Y, Lin D G, Fan Y J, Duan R, Cong Y Q, Zhang Y. Journal of Colloid and Interface Science, 2019, 548: 255.

[21]

Wang H L, Li S J, Zhang L S, Chen Z G. CrystEngComm, 2013, 15: 9011.

[22]

Bai J W, Li Y, Wei P K, Liu J D, Chen W, Liu L. Small, 2019, 15: 1900020.

[23]

Ye Z Y, Zhang B B, Shao L J, Xing G Y, Qi C Z, Tao H Y. Journal of Applied Polymer Science, 2019, 136: 41.

[24]

Gao C, Xiao B, Shi J W, He C, Ma D D, Cheng Y H, Niu C M. Journal of Catalysis, 2019, 380: 55.

[25]

Sun G T, Mao S M, Ma D D, Zou Y J, Lv Y X, Li Z H, He C, Cheng Y H, Shi J W. Journal of Materials Chemistry A, 2019, 7: 15278.

[26]

Peng Z Y, Sun Z, Chen J L, Li W, Chen J, Liu Y L, Chen K Q. Solar Energy, 2020, 205: 161.

[27]

Jiang H Y, Liu J J, Cheng K, Sun W B. Journal of Physical Chemistry C, 2013, 117: 20029.

[28]

Zhang L S, Wang W Z, Yang J, Chen Z G, Zhang W Q, Zhou L, Liu S W. Applied Catalysis A: General, 200, 308: 105.

[29]

Shan L W, Wang G L, Liu L Z, Wu Z. Journal of Molecular Catalysis A: Chemical, 2015, 406: 145.

[30]

Tian N, Huang H W, Wang S, Zhang T R, Du X, Zhang Y H. Applied Catalysis B: Environmental, 2020 118697.

[31]

Zhang X, Wang X B, Wang L W, Wang W K, Long L L, Li W W, Yu H Q. ACS Applied Materials & Interfaces, 2014, 6: 7766.

[32]

Hu X C, Wang G H, Wang J, Hu Z F, Su Y R. Applied Surface Science, 2020, 511: 145499.

[33]

Wang Q, Gao Q Y, Wu H, Fan Y J, Lin D G, He Q, Zhang Y, Cong Y Q. Separation and Purification Technology, 2019, 226: 232.

[34]

Jiang H Y, Li P, Ye J, Liu G G, Ye J H. Journal of Materials Chemistry A, 2015, 3: 5119.

[35]

Cong Y Q, Ji Y, Ge Y H, Jin H, Zhang Y, Wang Q. Chemical Engineering Journal, 2017, 307: 572.

[36]

Juntrapirom S, Tantraviwat D, Suntalelat S, Thongsook O, Phanichphant S, Inceesunggvorn B. Journal of Colloid and Interface Science, 2017, 504: 711.

[37]

An H, Lin B, Xue C, Yan X Q, Dai Y Z, Wei J J, Yang G D. Chinese Journal of Catalysis, 2018, 39: 654.

[38]

Wang S M, Guan Y, Wang L P, Zhao W, He H, Xiao J, Yang S G, Sun C. Applied Catalysis B: Environmental, 2015, 168: 448.

[39]

Li D Y, Zhang Y G, Zhang Y L, Zhou X F, Guo S J. Journal of Hazardous Materials, 2013, 258: 42.

[40]

Wang C, Zhai J L, Jiang H, Liu D C, Zhang L. Solid State Sciences, 2019, 98: 106020.

[41]

Xue J J, Ma S S, Zhou Y M, Zhang Z W. RSC Advances, 2015, 5: 18832.

[42]

Zhu S R, Qi Q, Fang Y, Zhao W N, Wu M K, Han L. Crystal Growth & Design, 2018, 18: 883.

[43]

Li X, Yu J G, Jaroniec M, Chen X B. Chemical Reviews, 2019, 119: 3962.

[44]

Yan Q S, Xie X, Liu Y G, Wang S B, Zhang M H, Chen Y Y, Si Y S. Journal of Hazardous Materials, 2019, 371: 304.

[45]

Liu X Z, Jiang X L, Chen Z Q, Yu J X. Materials Letters, 2018, 210: 194.

[46]

Chen D, Liu Z F, Li J W, Han L. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 627.

[47]

Zhang J L, Ma Z. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 212.

[48]

Cui Y Q, Nengzi L C, Gou J F, Huang Y, Li B, Cheng X W. Separation and Purification Technology, 2020, 232: 115959.

[49]

Liu H H, Yang C, Huang J, Chen J F, Zhong J B, Li J Z. Inorganic Chemistry Communications, 2020, 113: 107806.

[50]

Rao Z F, Zhu G Q, Hojamberdiev G, Zhang M, Zhang W B, Li S P, Gao J Z, Zhang F C, Huang Y H. Journal of Physical Chemistry C, 2019, 123: 16268.

[51]

Li Y Y, Wang J S, Yao H C, Dang L Y, Li Z J. Catalysis Communications, 2011, 12: 660.

[52]

Pan T, Chen D D, Xu W C, Fang J Z, Wu S X, Liu Z, Wu K, Fang Z Q. Journal of Hazaradous Materials, 2020, 393: 122366.

[53]

Zhu Z Y, Zhou F, Zhan S. Applied Surface Science, 2020, 506: 144934.

[54]

Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G. Applied Catalysis B: Environmental, 2019, 243: 556.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/