Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction

Yi Shi , Wenrui Dai , Meng Wang , Yongfang Xing , Xinghua Xia , Wei Chen

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 709 -714.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 709 -714. DOI: 10.1007/s40242-020-0167-2
Article

Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction

Author information +
History +
PDF

Abstract

Rational construction of low-cost, efficient, and durable electrocatalysts for the hydrogen evolution reaction(HER) is essential to further develop water electrolysis industry. Inspired by the natural enzyme catalysis with coordination environments of catalytic sites and three-dimensional structures, we construct an efficient Ru-based catalyst anchored on the nitrogen dopant on graphene aerogel(Ru-NGA). The Ru-NGA catalyst exhibits dramatically improved electroactivity and stability towards HER with a near-zero onset overpotential, a low Tafel slope of 32 mV/dec, and a high turnover frequency of 5.5 s−1 at −100 mV. The results show that the electronic modulation of metallic Ru nanoparticles by nitrogen coordination weakens the affinity of Ru towards H and hence facilitates the desorption of hydrogen. This research provides in-depth insights into the fundamental relationship between metallic nanostructure and HER activity, and also guides the rational design of high-performance electrocatalysts in energy conversion.

Keywords

Ruthenium / Graphene aerogel / Hydrogen evolution reaction / Electronic modulation / Electrocatalysis

Cite this article

Download citation ▾
Yi Shi, Wenrui Dai, Meng Wang, Yongfang Xing, Xinghua Xia, Wei Chen. Bioinspired Construction of Ruthenium-decorated Nitrogen-doped Graphene Aerogel as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36(4): 709-714 DOI:10.1007/s40242-020-0167-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shi Y, Zhai T-T, Zhou Y, Xu W-X, Yang D-R, Wang F-B, Xia X-H. J. Electroanal. Chem., 2018, 819: 442.

[2]

Deng Y, Ye C, Chen G, Tao B, Luo H, Li N. J. Energy Chem., 2019, 28: 95.

[3]

Mahmood J, Li F, Jung S-M, Okyay M S, Ahmad I, Kim S-J, Park N, Jeong H Y, Baek J-B. Nat. Nanotechnol., 2017, 12: 441.

[4]

Sun S-W, Wang G-F, Zhou Y, Wang F-B, Xia X-H. ACS Appl. Mater. Inter., 2019, 11: 19176.

[5]

Huang H, Zhao Y, Bai Y, Li F, Zhang Y, Chen Y. Adv. Sci., 2020, 7: 2000012.

[6]

Li Y, Li F-M, Zhao Y, Li S-N, Zhang J-H, Yao H-C, Chen Y. J. Mater. Chem. A, 2019, 7: 20658.

[7]

Cai Z-S, Shi Y, Bao S-S, Shen Y, Xia X-H, Zheng L-M. ACS Catal., 2018, 8: 3895.

[8]

Shi Y, Zhou Y, Yang D-R, Xu W-X, Wang C, Wang F-B, Xu J-J, Xia X-H, Chen H-Y. J. Am. Chem. Soc., 2017, 139: 15479.

[9]

Shi Y, Wang J, Wang C, Zhai T-T, Bao W-J, Xu J-J, Xia X-H, Chen H-Y. J. Am. Chem. Soc., 2015, 137: 7365.

[10]

Ai L, Tian T, Jiang J. ACS Sustain. Chem. Eng., 2017, 5: 4771.

[11]

Chi J-Q, Gao W-K, Lin J-H, Dong B, Yan K-L, Qin J-F, Liu B, Chai Y-M, Liu C-G. ChemSusChem, 2018, 11: 743.

[12]

Masa J, Schuhmann W. Nano Energy, 201, 29: 466.

[13]

Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I, Norskov J K. J. Am. Chem. Soc., 2005, 127: 5308.

[14]

Huang N, Yuan S, Drake H, Yang X, Pang J, Qin J, Li J, Zhang Y, Wang Q, Jiang D, Zhou H-C. J. Am. Chem. Soc., 2017, 139: 18590.

[15]

Wang J, Wang H-S, Wang K, Wang F-B, Xia X-H. Sci. Rep., 2014, 4: 6723.

[16]

Mao J, Iocozzia J, Huang J, Meng K, Lai Y, Lin Z. Energ. Environ. Sci., 2018, 11: 772.

[17]

Gerber I C, Serp P. Chem. Rev., 2020, 120: 1250.

[18]

Shi Y, Huang X-K, Wang Y, Zhou Y, Yang D-R, Wang F-B, Gao W, Xia X-H. ACS Appl. Nano Mater., 2019, 2: 3385.

[19]

Wang X, Zheng Y, Sheng W, Xu Z J, Jaroniec M, Qiao S-Z. Mater. Today, 2020, 36: 125.

[20]

Wang J, Wang K, Wang F-B, Xia X-H. Nat. Commun., 2014, 5: 5285.

[21]

Chen R J, Zhang Y, Wang D, Dai H. J. Am. Chem. Soc., 2001, 123: 3838.

[22]

Xu J, Liu T, Li J, Li B, Liu Y, Zhang B, Xiong D, Amorim I, Li W, Liu L. Energ. Environ. Sci., 2018, 11: 1819.

[23]

Song Q, Qiao X, Liu L, Xue Z, Huang C, Wang T. Chem. Commun., 2019, 55: 965.

[24]

Liu Y, Liu S, Wang Y, Zhang Q, Gu L, Zhao S, Xu D, Li Y, Bao J, Dai Z. J. Am. Chem. Soc., 2018, 140: 2731.

[25]

Li K, Li Y, Wang Y, Ge J, Liu C, Xing W. Energ. Environ. Sci., 2018, 11: 1232.

[26]

Yang J, Chen B, Liu X, Liu W, Li Z, Dong J, Chen W, Yan W, Yao T, Duan X, Wu Y, Li Y. Angew. Chem. Int. Ed., 2018, 57: 9495.

[27]

Li F, Han G-F, Noh H-J, Ahmad I, Jeon I-Y, Baek J-B. Adv. Mater., 2018, 30: 1803676.

[28]

Li Y, Zhang L A, Qin Y, Chu F, Kong Y, Tao Y, Li Y, Bu Y, Ding D, Liu M. ACS Catal., 2018, 8: 5714.

[29]

Liu W-X, Yu L-H, Yin R-L, Xu X-L, Feng J-X, Jiang X, Zheng D, Gao X-L, Gao X-B, Que W-B, Ruan P-C, Wu F-F, Shi W-H, Cao X-L. Small, 2020, 16: 1906775.

[30]

Nørskov J K, Abild-Pedersen F, Studt F, Bligaard T. Proc. Natl. Acad. Sci. USA, 2011, 108: 937.

[31]

Hammer B, Norskov J K. Nature, 1995, 376: 238.

[32]

Li Y, Sun Y, Qin Y, Zhang W, Wang L, Luo M, Yang H, Guo S. Adv. Energy Mater., 2020, 10: 1903120.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/