Visible-light-driven Hydroamination of Alkynes over a New Type of Activated Carbon Immobilized Cu2+ Photocatalyst

Xianmo Gu , Pengwei Ma , Pei Liu , Ruiyi Wang , Xincheng Li , Zhanfeng Zheng

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1039 -1044.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1039 -1044. DOI: 10.1007/s40242-020-0166-3
Article

Visible-light-driven Hydroamination of Alkynes over a New Type of Activated Carbon Immobilized Cu2+ Photocatalyst

Author information +
History +
PDF

Abstract

A new type of activated carbon immobilized copper(Cu/AC) photocatalyst was prepared by a facile impregnation-adsorption method, where Cu2+ is chemically adsorbed by abundant oxygenated functional groups on large-surface-area activated carbon surface. Cu/AC exhibited good activity and selectivity to imine for the hydroamination of alkynes at 60 °C under visible light irradiation. The reaction is initialized by the activation of alkynes molecules at Cu active sites with the aid of light as evidenced by the solid-state NMR and laser photolysis measurements and the control experiments. This strategy for catalyst design is potentially extended to the immobilization of other metal homogeneous catalysts for various heterogeneous catalytic systems.

Keywords

Activated carbon / Copper / Hydroamination / Photocatalysis

Cite this article

Download citation ▾
Xianmo Gu, Pengwei Ma, Pei Liu, Ruiyi Wang, Xincheng Li, Zhanfeng Zheng. Visible-light-driven Hydroamination of Alkynes over a New Type of Activated Carbon Immobilized Cu2+ Photocatalyst. Chemical Research in Chinese Universities, 2020, 36(6): 1039-1044 DOI:10.1007/s40242-020-0166-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Müller T E, Hultzsch K C, Yus M, Foubelo F, Tada M. Chem. Rev., 2008, 108: 3795.

[2]

Severin R, Doye S. Chem. Soc. Rev., 2007, 36: 1407.

[3]

Pouy M J, Delp S A, Uddin J, Ramdeen V M, Cochrane N A, Fortman G C, Gunnoe T B, Cundari T R, Sabat M, Myers W H. ACS Catal., 2012, 2: 2182.

[4]

Colonna P, Bezzenine S, Gil R, Hannedouche J. Adv. Synth. Catal., 2020, 362: 1550.

[5]

Thomas A A, Speck K, Kevlishvili I, Lu Z, Liu P, Buchwald S L. J. Am. Chem. Soc., 2018, 140: 13976.

[6]

Genna D T, Wong-Foy A G, Matzger A J, Sanford M S. J. Am. Chem. Soc., 2013, 135: 10586.

[7]

Zhang Y, Xiang S, Wang G, Jiang H, Xiong C. Catal. Sci. Technol., 2014, 4: 1055.

[8]

Sengupta M, Das S, Bordoloi A. Mol. Catal., 2017, 440: 57.

[9]

Shanbhag G V, Joseph T, Halligudi S B. J. Catal., 2007, 250: 27.

[10]

Zhao J, Zheng Z, Bottle S, Chou A, Sarina S, Zhu H. Chem. Commun., 2013, 49: 2676.

[11]

Cui Y, Wang B, Wen C, Chen X, Dai W L. ChemCatChem, 201, 8: 527.

[12]

Liu H, Yu Q, Fu H, Wan Y, Qu X, Xu Z, Yin D, Zheng S. Appl. Catal. B: Environ., 2018, 222: 167.

[13]

Rey A, Faraldos M, Casas J A, Zazo J A, Bahamonde A, Rodríguez J J. Appl. Catal. B: Environ., 2009, 86: 69.

[14]

Biniak S, Pakuła M, Szymański G S, Świątkowski A. Langmuir, 1999, 15: 6117.

[15]

Hu X, Lei L, Chu H P, Yue P L. Carbon, 1999, 37: 631.

[16]

Joseph T, Shanbhag G V, Halligudi S B. J. Mol. Catal. A: Chem., 2005, 236: 139.

[17]

Miao M, Zuo S, Zhao Y, Wang Y, Xia H, Tan C, Gao H. Carbon, 2018, 140: 504.

[18]

Zhang Z, Luo D, Lui G, Li G, Jiang G, Cano Z P, Deng Y P, Du X, Yin S, Chen Y, Zhang M, Yan Z, Chen Z. Carbon, 2019, 143: 531.

[19]

Zhang G, Li Z, Zheng H, Fu T, Ju Y, Wang Y. Appl. Catal. B: Environ., 2015, 179: 95.

[20]

Figueiredo J L, Pereira M F R, Freitas M M A, Órfão J J M. Carbon, 1999, 37: 1379.

[21]

Chen J P, Wu S, Chong K H. Carbon, 2003, 41: 1979.

[22]

Legrouri K, Khouya E, Hannache H, Hartti M E, Ezzine M, Naslain R. Chem. Int., 2017, 3: 301.

[23]

Biesinger M C, Lau L W M, Gerson A R, Smart R S C. Appl. Sur. Sci., 2010, 257: 887.

[24]

Espinós J P, Morales J, Barranco A, Caballero A, Holgado J P, González-Elipe A R. J. Phys. Chem. B, 2002, 106: 6921.

[25]

Kang M, Bae Y S, Lee C H. Carbon, 2005, 43: 1512.

[26]

Rodrigues E G, Pereira M F R, Chen X W, Delgado J J, Órfão J J M. J. Catal., 2011, 281: 119.

[27]

Zhao Y, Zhao Y, Shi R, Wang B, Waterhouse G I N, Wu L, Tung C H, Zhang T. Adv. Mater., 2019, 31: 1806482.

[28]

Fleischer S, Werkmeister S, Zhou S L, Junge K, Beller M. Chem. Eur. J., 2012, 18: 9005.

[29]

Mizushima E, Hayashi T, Tanaka M. Org. Lett., 2003, 5: 3349.

[30]

Hefner J G, Zizelman P M, Durfee L D, Lewandos G S. J. Organomet. Chem., 1984, 260: 369.

[31]

Xiong X, Zhao Y, Shi R, Yin W, Zhao Y, Waterhouse G I N, Zhang T. Sci. Bull., 2020, 65: 987.

[32]

Zhong J, Yang C, Chang X, Zou C, Lu W, Che C M. Chem. Commun., 2017, 53: 8948.

[33]

Penzien J, Haeßner C, Jentys A, Köhler K, Müller T E, Lercher J A. J. Catal., 2004, 221: 302.

[34]

Patil N T, Mutyala A K, Lakshmi P G V V, Gajula B, Sridhar B, Pottireddygari G R, Rao T P. J. Org. Chem., 2010, 75: 5963.

[35]

Müller T E, Berger M, Grosche M, Herdtweck E, Schmidtchen F P. Organometallics, 2001, 20: 4384.

[36]

Nisa R U, Ayub K. New J. Chem., 2017, 41: 5082.

[37]

Guo S, Yang J, Buchwald S L. J. Am. Chem. Soc., 2018, 140: 15976.

[38]

Tao D, Liu F, Wang L, Jiang L. Appl. Catal. A: Gen., 2018, 564: 56.

[39]

Cheng X, Hii K K M. Tetrahedron, 2001, 57: 5445.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/