Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis

Jinguli Wen , Yuwen Li , Junkuo Gao

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 662 -679.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 662 -679. DOI: 10.1007/s40242-020-0163-6
Review

Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis

Author information +
History +
PDF

Abstract

The most important topics in the world today are environmental and resource issues. The development of green and clean energy is still one of the great challenges of social sustainable development. Two-dimensional(2D) metal-organic frameworks(MOFs) and derivatives have exceptional potential as high-efficiency electrocatalysts for clean energy technologies. This review summarizes various synthesis strategies and applications of 2D MOFs and derivatives in electrocatalysis. Firstly, we will outline the advantages and uniqueness of 2D MOFs and derivatives, as well as their applicable areas. Secondly, the synthetic strategies of 2D MOFs and derivatives are briefly classified. Each category is summarized and we list classic representative fabrication methods, including specific fabrication methods and mechanisms, corresponding structural characteristics, and insights into the advantages and limitations of the synthesis method. Thirdly, we separately classify and summarize the application of 2D MOFs and derivatives in electrocatalysis, including electrocatalytic water splitting, oxygen reduction reaction(ORR), CO2 reduction reaction(CO2RR), and other electrocatalytic applications. Finally, the development prospects and existing challenges to 2D MOFs and derivatives are discussed.

Keywords

Two-dimensional / Metal-organic framework / Derivative / Synthesis strategy / Electrocatalysis

Cite this article

Download citation ▾
Jinguli Wen, Yuwen Li, Junkuo Gao. Two-dimensional Metal-organic Frameworks and Derivatives for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36(4): 662-679 DOI:10.1007/s40242-020-0163-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov KS, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

[2]

Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov S V, Geim A K. P. Natl. Acad. Sci. USA, 2005, 102(30): 10451.

[3]

Li H, Wu J, Yin Z, Zhang H. Acc. Chem. Res., 2014, 47(4): 1067.

[4]

Yi M, Shen Z. J. Mater. Chem. A, 2015, 3(22): 11700.

[5]

Li M, Luo Z, Zhao Y. Sci. China Chem., 2018, 61(10): 1214.

[6]

Mendoza-Sanchez B, Gogotsi Y. Adv. Mater., 201, 28(29): 6104.

[7]

Choudhary N, Islam MA, Kim JH, Ko T-J, Schropp A, Hurtado L, Weitzman D, Zhai L, Jung Y. Nano Today, 2018, 19: 16.

[8]

Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S Z. Chem. Rev., 2018, 118(13): 6337.

[9]

Li P, Cheng F-F, Xiong W -W, Zhang Q. Inorg. Chem. Front., 2018, 5(11): 2693.

[10]

Sun T, Xie J, Guo W, Li D S, Zhang Q. Adv. Energy Mater., 2020, 10(19): 1904199.

[11]

Zhi Y., Wang Z., Zhang H. L., Zhang Q., Small, 2020, 2001070

[12]

Zhan X, Chen Z, Zhang Q. J. Mater. Chem. A, 2017, 5(28): 14463.

[13]

Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5700.

[14]

Lu G, Li S, Guo Z, Farha OK, Hauser B G, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo S C, Wei W D, Yang Y, Hupp JT, Huo F. Nat. Chem., 2012, 4(4): 310.

[15]

Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen A H, Maurin G, Eddaoudi M. Chem. Soc. Rev., 2017, 46(11): 3402.

[16]

Gao J, Qian X, Lin RB, Krishna R, Wu H, Zhou W, Chen B. Angew. Chem. Int. Ed., 2020, 59(11): 4396.

[17]

Dolgopolova E A, Rice A M, Martin C R, Shustova NB. Chem. Soc. Rev., 2018, 47(13): 4710.

[18]

Wu MX, Yang Y W. Adv. Mater., 2017, 29(23): 1606134.

[19]

Qu C, Jiao Y, Zhao B, Chen D, Zou R, Walton KS, Liu M. Nano Energy, 201, 26: 66.

[20]

Zhao R, Liang Z, Zou R, Xu Q. Joule, 2018, 2(11): 2235.

[21]

Wang K-B, Xun Q, Zhang Q. EnergyChem, 2020, 2(1): 100025.

[22]

Wu Z, Xie J, Xu ZJ, Zhang S, Zhang Q. J. Mater. Chem. A, 2019, 7(9): 4259.

[23]

Zhao Y, Song Z, Li X, Sun Q, Cheng N, Lawes S, Sun X. Energy Storage Mater., 201, 2: 35.

[24]

Hou C C, Xu Q. Adv. Energy Mater., 2018, 9(23): 1801307.

[25]

Yan Y., Li C., Wu Y., Gao J., Zhang Q., J. Mater. Chem. A, 2020, doi:https://doi.org/10.1039/D0TA03749D

[26]

Wu Y -P, Wu X-Q, Wang J-F, Zhao J, Dong W -W, Li D-S, Zhang Q-C. Crystal Growth & Design, 201, 16(4): 2309.

[27]

Qin Z-S, Dong W -W, Zhao J, Wu Y -P, Zhang Q, Li D-S. Inorg. Chem. Front., 2018, 5(1): 120.

[28]

Sun L, Campbell MG, Dinca M. Angew. Chem. Int. Ed., 201, 55(11): 3566.

[29]

Cui X, Tang C, Zhang Q. Adv. Energy Mater., 2018, 8(22): 1800369.

[30]

Tang C, Qiao S Z. Chem. Soc. Rev., 2019, 48(12): 3166.

[31]

Gao J, Cong J, Wu Y, Sun L, Yao J, Chen B. ACS Appl. Energy Mater., 2018, 1: 5140.

[32]

Jahan M, Liu Z, Loh KP. Adv. Funct. Mater., 2013, 23(43): 5363.

[33]

Chen G F, Ren S, Zhang L, Cheng H, Luo Y, Zhu K, Ding LX, Wang H. Small Methods, 2018, 3(6): 1800337.

[34]

Ashworth D J, Foster JA. J. Mater. Chem. A, 2018, 6(34): 16292.

[35]

Liu W, Yin R, Xu X, Zhang L, Shi W, Cao X. Adv. Sci., 2019, 6(12): 1802373.

[36]

Duan J, Li Y, Pan Y, Behera N, Jin W. Coordin. Chem. Rev., 2019, 395: 25.

[37]

Jiao L, Wang Y, Jiang H L, Xu Q. Adv. Mater., 2018, 30(37): 1703663.

[38]

Campbell MG, Liu S F, Swager TM, Dinca M. J. Am. Chem. Soc., 2015, 137(43): 13780.

[39]

Li Y L, Zhou JJ, Wu MK, Chen C, Tao K, Yi F Y, Han L. Inorg. Chem., 2018, 57(11): 6202.

[40]

Jayaramulu K, Masa J, Morales D M, Tomanec O, Ranc V, Petr M, Wilde P, Chen Y T, Zboril R, Schuhmann W, Fischer RA. Adv. Sci., 2018, 5(11): 1801029.

[41]

Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. Adv. Energy Mater., 2018, 8(21): 1800584.

[42]

Zhu D, Liu J, Zhao Y, Zheng Y, Qiao S Z. Small, 2019, 15(14): 1805511.

[43]

Xu H, Fei B, Cai G, Ha Y, Liu J, Jia H, Zhang J, Liu M, Wu R. Adv. Energy Mater., 2019, 10(3): 1902714.

[44]

Liu S, Zhou J, Song H. Chem. Commun., 2018, 54(70): 9825.

[45]

Rui K, Zhao G, Lao M, Cui P, Zheng X, Zheng X, Zhu J, Huang W, Dou S X, Sun W. Nano Lett., 2019, 19(12): 8447.

[46]

Sakamoto R, Takada K, Pal T, Maeda H, Kambe T, Nishihara H. Chem. Commun., 2017, 53(43): 5781.

[47]

Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. Sci. China Chem., 2019, 62(9): 1145.

[48]

Wang J, Li N, Xu Y, Pang H. Chem. Eur. J., 2020, 26(29): 6402.

[49]

Varoon K, Zhang X, Elyassi B, Brewer D D, Gettel M, Kumar S, Lee JA, Maheshwari S, Mittal A, Sung C Y, Cococcioni M, Francis LF, McCormick A V, Mkhoyan KA, Tsapatsis M. Science, 2011, 334(6052): 72.

[50]

Foster JA, Henke S, Schneemann A, Fischer RA, Cheetham A K. Chem. Commun., 201, 52(69): 10474.

[51]

Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun’Ko Y K, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman JN. Nat. Nanotechnol., 2008, 3(9): 563.

[52]

Li C, Wu C, Zhang B. ACS Sustain. Chem. Eng., 2019, 8(1): 642.

[53]

Saines PJ, Tan J C, Yeung H H, Barton P T, Cheetham A K. Dalton T., 2012, 41(28): 8585.

[54]

Nielsen RB, Kongshaug KO, Fjellvåg H. J. Mater. Chem., 2008, 18(9): 1002.

[55]

Cliffe MJ, Castillo-Martinez E, Wu Y, Lee J, Forse A C, Firth F C N, Moghadam PZ, Fairen-Jimenez D, Gaultois M W, Hill JA, Magdysyuk OV, Slater B, Goodwin A L, Grey C P. J. Am. Chem. Soc., 2017, 139(15): 5397.

[56]

Tian J., Jiang F., Yuan D., Zhang L., Chen Q., Hong M., Angew. Chem. Int. Ed., 2020, https://doi.org/10.1002/anie.202004420

[57]

Peng Y, Li Y, Ban Y, Yang W. Angew. Chem. Int. Ed., 2017, 56(33): 9757.

[58]

Wu JX, Yuan W W, Xu M, Gu ZY. Chem. Commun., 2019, 55(77): 11634.

[59]

Tan J-C, Saines PJ, Bithell E G, Cheetham A K. ACS Nano, 2012, 6: 615.

[60]

Xu H, Gao J, Qian X, Wang J, He H, Cui Y, Yang Y, Wang Z, Qian G. J. Mater. Chem. A, 201, 4(28): 10900.

[61]

Brent JR, Savjani N, Lewis E A, Haigh S J, Lewis D J, O’Brien P. Chem. Commun., 2014, 50(87): 13338.

[62]

Coleman JN, Lotya M, O’Neill A, Bergin S D, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ. Science, 2011, 331(6017): 568.

[63]

Gallego A, Hermosa C, Castillo O, Berlanga I, Gomez-Garcia C J, Mateo-Marti E, Martinez JI, Flores F, Gomez-Navarro C, Gomez-Herrero J, Delgado S, Zamora F. Adv. Mater., 2013, 25(15): 2141.

[64]

Wang H-S, Li J, Li J-Y, Wang K, Ding Y, Xia X-H. NPG Asia Mater., 2017, 9(3): 354.

[65]

Chandrasekhar P, Mukhopadhyay A, Savitha G, Moorthy JN. J. Mater. Chem. A, 2017, 5(11): 5402.

[66]

Au VK, Nakayashiki K, Huang H, Suginome S, Sato H, Aida T. J. Am. Chem. Soc., 2019, 141(1): 53.

[67]

Ding Y, Chen Y P, Zhang X, Chen L, Dong Z, Jiang H L, Xu H, Zhou H C. J. Am. Chem. Soc., 2017, 139(27): 9136.

[68]

Huang J, Li Y, Huang RK, He C T, Gong L, Hu Q, Wang L, Xu Y T, Tian XY, Liu S Y, Ye ZM, Wang F, Zhou D D, Zhang W X, Zhang J P. Angew. Chem. Int. Ed., 2018, 57(17): 4632.

[69]

Cho W, Lee H J, Oh M. J. Am. Chem. Soc, 2008, 130(50): 16943.

[70]

Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Nature, 2000, 404(2): 59.

[71]

Gao J, He M, Lee ZY, Cao W, Xiong W -W, Li Y, Ganguly R, Wu T, Zhang Q. Dalton T., 2013, 42(32): 11367.

[72]

Jian M, Liu H, Williams T, Ma J, Wang H, Zhang X. Chem. Commun., 2017, 53(98): 13161.

[73]

Zhan G, Zeng H C. Adv. Funct. Mater., 201, 26(19): 3268.

[74]

Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H. Adv. Mater., 201, 28(21): 4149.

[75]

Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H. Adv. Mater., 2015, 27(45): 7372.

[76]

Lin Y, Chen G, Wan H, Chen F, Liu X, Ma R. Small, 2019, 15(18): 1900348.

[77]

Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, Cao X, Lu Q, Zhang X, Zhang Z, Tan C, Zhang H. J. Am. Chem. Soc., 201, 138(22): 6924.

[78]

He T, Ni B, Zhang S, Gong Y, Wang H, Gu L, Zhuang J, Hu W, Wang X. Small, 2018, 14(16): 1703929.

[79]

Pustovarenko A, Goesten MG, Sachdeva S, Shan M, Amghouz Z, Belmabkhout Y, Dikhtiarenko A, Rodenas T, Keskin D, Voets I K, Weckhuysen B M, Eddaoudi M, de Smet L, Sudholter E J R, Kapteijn F, Seoane B, Gascon J. Adv. Mater., 2018, 30(26): 1707234.

[80]

Xue F, Kumar P, Xu W, Mkhoyan KA, Tsapatsis M. Chem. Mater., 2017, 30(1): 69.

[81]

Zhao Y, Jiang L, Shangguan L, Mi L, Liu A, Liu S. J. Mater. Chem. A, 2018, 6(6): 2828.

[82]

Pham M-H, Vuong G-T, Fontaine F-G, Do T-O. Cryst. Growth Des., 2012, 12(6): 3091.

[83]

Lin Y, Wan H, Wu D, Chen G, Zhang N, Liu X, Li J, Cao Y, Qiu G, Ma R. J. Am. Chem. Soc., 2020, 142(16): 7317.

[84]

Zhao K, Liu S, Ye G, Gan Q, Zhou Z, He Z. J. Mater. Chem. A, 2018, 6(5): 2166.

[85]

Li F L, Wang P, Huang X, Young D J, Wang H F, Braunstein P, Lang J P. Angew. Chem. Int. Ed., 2019, 58(21): 7051.

[86]

Zhuang L, Ge L, Liu H, Jiang Z, Jia Y, Li Z, Yang D, Hocking RK, Li M, Zhang L, Wang X, Yao X, Zhu Z. Angew. Chem. Int. Ed., 2019, 58(38): 13565.

[87]

Duan J, Chen S, Zhao C. Nat. Commun., 2017, 8: 15341.

[88]

Jabarian S, Ghaffarinejad A. J. Inorg. Organomet. Polym., 2019, 29(5): 1565.

[89]

Wei X, Li N, Liu N. Electrochim. Acta, 2019, 318: 957.

[90]

Dong R, Zhang T, Feng X. Chem. Rev., 2018, 118(13): 6189.

[91]

Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

[92]

Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabres I X F X, Gascon J. Nat. Mater., 2015, 14(1): 48.

[93]

Tsukamoto T, Takada K, Sakamoto R, Matsuoka R, Toyoda R, Maeda H, Yagi T, Nishikawa M, Shinjo N, Amano S, Iokawa T, Ishibashi N, Oi T, Kanayama K, Kinugawa R, Koda Y, Komura T, Nakajima S, Fukuyama R, Fuse N, Mizui M, Miyasaki M, Yamashita Y, Yamada K, Zhang W, Han R, Liu W, Tsubomura T, Nishihara H. J. Am. Chem. Soc., 2017, 139(15): 5359.

[94]

Makiura R, Konovalov O. Sci. Rep., 2013, 3: 2506.

[95]

Chen J, Zhuang P, Ge Y, Chu H, Yao L, Cao Y, Wang Z, Chee M O L, Dong P, Shen J, Ye M, Ajayan P M. Adv. Funct. Mater., 2019, 29(37): 1903875.

[96]

Sakaida S, Otsubo K, Sakata O, Song C, Fujiwara A, Takata M, Kitagawa H. Nat. Chem., 201, 8(4): 377.

[97]

Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di C A, Yi Y, Sun Y, Xu W, Zhu D. Nat. Commun., 2015, 6: 7408.

[98]

Wang Z, Gui M, Asif M, Yu Y, Dong S, Wang H, Wang W, Wang F, Xiao F, Liu H. Nanoscale, 2018, 10(14): 6629.

[99]

Ning H, Mao Q, Wang W, Yang Z, Wang X, Zhao Q, Song Y, Wu M. J. Alloys Compd., 2019, 785: 7.

[100]

Wang L, Sahabudeen H, Zhang T, Dong R. NPJ 2D Mater. Appl., 2018, 2(1): 26.

[101]

Murray D J, Patterson D D, Payamyar P, Bhola R, Song W, Lackinger M, Schluter A D, King B T. J. Am. Chem. Soc., 2015, 137(10): 3450.

[102]

Huang L, Zhang X, Han Y, Wang Q, Fang Y, Dong S. J. Mater. Chem. A, 2017, 5(35): 18610.

[103]

Cai M, Liu Q, Xue Z, Li Y, Fan Y, Huang A, Li M-R, Croft M, Tyson TA, Ke Z, Li G. J. Mater. Chem. A, 2020, 8(1): 190.

[104]

Kukulka W, Cendrowski K, Mijowska E. Electrochim. Acta, 2019, 307: 582.

[105]

Li Y, Liu H, Wang H, Qiu J, Zhang X. Chem. Sci., 2018, 9(17): 4132.

[106]

Yao S, Jiao Y, Sun S, Wang L, Li P, Chen G. ACS Sustain. Chem. Eng., 2020, 8(8): 3191.

[107]

Zhu D, Liu J, Wang L, Du Y, Zheng Y, Davey K, Qiao S Z. Nanoscale, 2019, 11(8): 3599.

[108]

Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem. Soc. Rev., 2018, 47(16): 6267.

[109]

Dhakshinamoorthy A, Asiri A M, Garcia H. Adv. Mater., 2019, 31(41): 1900617.

[110]

Li Y -Z, Fu Z-H, Xu G. Coordin. Chem. Rev., 2019, 388: 79.

[111]

Khan K, Tareen A K, Aslam M, Zhang Y, Wang R, Ouyang Z, Gou Z, Zhang H. Nanoscale, 2019, 11(45): 21622.

[112]

Zhu Y, Peng W, Li Y, Zhang G, Zhang F, Fan X. Small Methods, 2019, 3(9): 1800438.

[113]

Du L, Xing L, Zhang G, Sun S. Carbon, 2020, 156: 77.

[114]

Lu XF, Xia B Y, Zang S Q, Lou X W D. Angew. Chem. Int. Ed., 2020, 59(12): 4634.

[115]

Wang H F, Chen L, Pang H, Kaskel S, Xu Q. Chem. Soc. Rev., 2020, 49(5): 1414.

[116]

Morozan A, Jaouen F. Energy Environ. Sci., 2012, 5(11): 9269.

[117]

Zhang K, Guo W, Liang Z, Zou R. Sci. China Chem., 2019, 62(4): 417.

[118]

Zhu B, Xia D, Zou R. Coordin. Chem. Rev., 2018, 376: 430.

[119]

Wang T, Xie H, Chen M, D’Aloia A, Cho J, Wu G, Li Q. Nano Energy, 2017, 42: 69.

[120]

Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou S X. Adv. Funct. Mater., 2018, 28(26): 1801554.

[121]

Ding M, Chen J, Jiang M, Zhang X, Wang G. J. Mater. Chem. A, 2019, 7(23): 14163.

[122]

Hai G, Jia X, Zhang K, Liu X, Wu Z, Wang G. Nano Energy, 2018, 44: 345.

[123]

Zhao S, Wang Y, Dong J, He C-T, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak A M, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nat. Energy, 201, 1(12): 1038.

[124]

Hao Y, Liu Q, Zhou Y, Yuan Z, Fan Y, Ke Z, Su C Y, Li G. Energy Environ. Mater., 2019, 2(1): 18.

[125]

Wang S S, Jiao L, Qian Y, Hu W C, Xu G Y, Wang C, Jiang H L. Angew. Chem. Int. Ed., 2019, 58(31): 10713.

[126]

Dong R, Zheng Z, Tranca D C, Zhang J, Chandrasekhar N, Liu S, Zhuang X, Seifert G, Feng X. Chem. Eur. J., 2017, 23(10): 2255.

[127]

Wu Y P, Zhou W, Zhao J, Dong W W, Lan Y Q, Li D S, Sun C, Bu X. Angew. Chem. Int. Ed., 2017, 56(42): 13001.

[128]

Ji Y, Dong H, Liu C, Li Y. Nanoscale, 2019, 11(2): 454.

[129]

Lions M, Tommasino JB, Chattot R, Abeykoon B, Guillou N, Devic T, Demessence A, Cardenas L, Maillard F, Fateeva A. Chem. Commun., 2017, 53(48): 6496.

[130]

Li L, He J, Wang Y, Lv X, Gu X, Dai P, Liu D, Zhao X. J. Mater. Chem. A, 2019, 7(5): 1964.

[131]

Zhong H, Ly KH, Wang M, Krupskaya Y, Han X, Zhang J, Zhang J, Kataev V, Buchner B, Weidinger I M, Kaskel S, Liu P, Chen M, Dong R, Feng X. Angew. Chem. Int. Ed., 2019, 58(31): 10677.

[132]

Miner E M, Fukushima T, Sheberla D, Sun L, Surendranath Y, Dinca M. Nat. Commun., 201, 7: 10942.

[133]

Feng X, Pi Y, Song Y, Brzezinski C, Xu Z, Li Z, Lin W. J. Am. Chem. Soc., 2020, 142(2): 690.

[134]

Ji L, Chang L, Zhang Y, Mou S, Wang T, Luo Y, Wang Z, Sun X. ACS Catal., 2019, 9(11): 9721.

[135]

Yin Z, Yu C, Zhao Z, Guo X, Shen M, Li N, Muzzio M, Li J, Liu H, Lin H, Yin J, Lu G, Su D, Sun S. Nano Lett., 2019, 19(12): 8658.

[136]

Varela A S, Ju W, Strasser P. Adv. Energy Mater., 2018, 8(30): 1703614.

[137]

Ding M, Flaig RW, Jiang H L, Yaghi OM. Chem. Soc. Rev., 2019, 48(10): 2783.

[138]

Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S, Tang L. Adv. Energy Mater., 2018, 8(32): 1801587.

[139]

Wu JX, Hou S Z, Zhang XD, Xu M, Yang H F, Cao PS, Gu ZY. Chem. Sci., 2019, 10(7): 2199.

[140]

Jiang X, Wu H, Chang S, Si R, Miao S, Huang W, Li Y, Wang G, Bao X. J. Mater. Chem. A, 2017, 5(36): 19371.

[141]

Yang L, Cao L, Huang R, Hou ZW, Qian XY, An B, Xu H C, Lin W, Wang C. ACS Appl. Mater. Interfaces, 2018, 10(42): 36290.

[142]

Li Q, Shao Z, Han T, Zheng M, Pang H. ACS Sustain. Chem. Eng., 2019, 7(9): 8986.

[143]

Zhu D, Guo C, Liu J, Wang L, Du Y, Qiao S Z. Chem. Commun., 2017, 53(79): 10906.

[144]

Wang Y, Xue Y Y, Yan LT, Li H P, Li Y P, Yuan E H, Li M, Li S N, Zhai QG. ACS Appl. Mater. Interfaces, 2020, 5(6): 5094.

[145]

Yang L, Ma F X, Xu F, Li D, Su L, Xu H C, Wang C. Chem. Asian. J., 2019, 14(20): 3557.

[146]

Xu Y, Chai X, Ren T, Yu S, Yu H, Wang Z, Li X, Wang L, Wang H. Chem. Commun., 2020, 56(14): 2151.

[147]

Liu B, Shioyama H, Akita T, Xu Q. J. Am. Chem. Soc., 2008, 130(16): 5390.

[148]

Li Y, Lu M, He P, Wu Y, Wang J, Chen D, Xu H, Gao J, Yao J. Chem. Asian. J., 2019, 14(9): 1590.

[149]

Li Y, Lu M, Wu Y, Xu H, Gao J, Yao J. Adv. Mater. Interfaces, 2019, 6(12): 1900290.

[150]

Guan C, Liu X, Ren W, Li X, Cheng C, Wang J. Adv. Energy Mater., 2017, 7(12): 1602391.

[151]

Sun H, Lian Y, Yang C, Xiong L, Qi P, Mu Q, Zhao X, Guo J, Deng Z, Peng Y. Energy Environ. Sci., 2018, 11(9): 2363.

[152]

Zhang X, Liu S, Zang Y, Liu R, Liu G, Wang G, Zhang Y, Zhang H, Zhao H. Nano Energy, 201, 30: 93.

[153]

Zhou J, Dou Y, Zhou A, Shu L, Chen Y, Li J-R. ACS Energy Lett., 2018, 3(7): 1655.

[154]

Wang Y, Pan Y, Zhu L, Yu H, Duan B, Wang R, Zhang Z, Qiu S. Carbon, 2019, 146: 671.

[155]

Jiang M, Li J, Cai X, Zhao Y, Pan L, Cao Q, Wang D, Du Y. Nanoscale, 2018, 10(42): 19774.

[156]

Li Y, Zhao T, Lu M, Wu Y, Xie Y, Xu H, Gao J, Yao J, Qian G, Zhang Q. Small, 2019, 15(43): 1901940.

[157]

Lu M, Li Y, He P, Cong J, Chen D, Wang J, Wu Y, Xu H, Gao J, Yao J. J. Solid State Chem., 2019, 272: 32.

[158]

Srinivas K, Lu Y, Chen Y, Zhang W, Yang D. ACS Sustain. Chem. Eng., 2020, 8(9): 3820.

[159]

Li Y, Dai H. Chem. Soc. Rev., 2014, 43(15): 5257.

[160]

Shah S S A, Najam T, Aslam MK, Ashfaq M, Rahman M M, Wang K, Tsiakaras P, Song S, Wang Y. Appl. Catal. B: Environ., 2020, 268(18): 118570.

[161]

Zhu B, Liang Z, Xia D, Zou R. Energy Storage Mater., 2019, 23: 757.

[162]

Li Z, Shao M, Zhou L, Yang Q, Zhang C, Wei M, Evans D G, Duan X. Nano Energy, 201, 25: 100.

[163]

Li Z, Shao M, Zhou L, Zhang R, Zhang C, Wei M, Evans D G, Duan X. Adv. Mater., 201, 28(12): 2337.

[164]

Zhong H X, Wang J, Zhang Y W, Xu W L, Xing W, Xu D, Zhang Y F, Zhang XB. Angew. Chem. Int. Ed., 2014, 53(51): 14235.

[165]

Zhang M, Wang C, Yan X, Kwame KP, Chen S, Xiao C, Qi J, Sun X, Wang L, Li J. J. Mater. Chem. A, 2019, 7(35): 20162.

[166]

Wang X, Zhu Z, Chai L, Ding J, Zhong L, Dong A, Li T-T, Hu Y, Qian J, Huang S. J. Power Sources, 2019, 440: 227158.

[167]

Dang S, Zhu Q-L, Xu Q. Nat. Rev. Mater., 2017, 3(1): 17075.

[168]

Chen Y Z, Wang C, Wu ZY, Xiong Y, Xu Q, Yu S H, Jiang H L. Adv. Mater., 2015, 27(34): 5010.

[169]

Shen K, Chen X, Chen J, Li Y. ACS Catal., 201, 6(9): 5887.

[170]

Zhang S L, Guan B Y, Lou X W D. Small, 2019, 15(13): 1805324.

[171]

Ren Q, Wang H, Lu XF, Tong Y X, Li G R. Adv. Sci., 2018, 5(3): 1700515.

[172]

Zhang S L, Guan B Y, Wu H B, Lou X W D. Nano-Micro Lett., 2018, 10(3): 44.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/