Anthraquinone Covalently Modified Carbon Nanotubes for Efficient and Steady Electrocatalytic H2O2 Generation

Fangyuan Yu , Kai Wang , Chuan Wang , Xinxia He , Yang Liao , Shilin Zhao , Hui Mao , Xiaoting Li , Jun Ma

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1332 -1338.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1332 -1338. DOI: 10.1007/s40242-020-0161-8
Article

Anthraquinone Covalently Modified Carbon Nanotubes for Efficient and Steady Electrocatalytic H2O2 Generation

Author information +
History +
PDF

Abstract

Anthraquinone(AQ) modified carbon materials could be endowed with significantly improved oxygen reduction reaction(ORR) activity. However, the application of these materials in the generation of hydrogen peroxide (H2O2) has been rarely investigated. For this motivation, AQ covalently modified carbon nanotube(AQ-CNT) was purposely synthesized for H2O2 generation. It was found that the cumulative H2O2 concentration reached up to 187.18 mg/(Lh) over AQ(40)-CNT catalyst, nearly 2.0 times higher than that over CNT, and being superior to those over most carbon materials reported. The enhanced activity stemmed from the improved mass transfer efficiency of oxygen and the enhanced electrocatalytic activity. Noteworthily, the AQ(40)-CNT material exhibited satisfactory stability for H2O2 generation, which was ascribed to the strong interaction force of C-N covalent bond. The present work could provide a vital idea for designing electrode material with simultaneously improved activity and stability for H2O2 generation.

Keywords

Anthraquinone / Covalently modified carbon nanotube / Oxygen reduction reaction / Generation of hydrogen peroxide

Cite this article

Download citation ▾
Fangyuan Yu, Kai Wang, Chuan Wang, Xinxia He, Yang Liao, Shilin Zhao, Hui Mao, Xiaoting Li, Jun Ma. Anthraquinone Covalently Modified Carbon Nanotubes for Efficient and Steady Electrocatalytic H2O2 Generation. Chemical Research in Chinese Universities, 2020, 36(6): 1332-1338 DOI:10.1007/s40242-020-0161-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgin M, Borowska E, Helbing J, Hüllender J, Kaiser H P, Kienle C, McArdell C S, Simon E, von Gunten U. Water Res., 2017, 122: 234.

[2]

Song W, Yu L, Xie X, Hao Z, Sun M, Wen H, Li Y. RSC Adv., 2017, 7: 25305.

[3]

Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.

[4]

Dong C, Ji J, Shen B, Xing M, Zhang J. Environmental Science & Technology, 2018, 52: 11297.

[5]

Yang L, Dong G, Jacobs D L, Wang Y, Zang L, Wang C. Journal of Catalysis, 2017, 352: 274.

[6]

Osmieri L, Escudero-Cid R, Monteverde Videla A H A, Ocón P, Specchia S. Appl. Catal. B, 2017, 201: 253.

[7]

Tang C, Wang H F, Chen X, Li B Q, Hou T Z, Zhang B, Zhang Q, Titirici M M, Wei F. Adv. Mater., 201, 28: 6845.

[8]

Liu S, Yang Z, Li M, Liu L, Wang Y, Lv W, Qin Z, Zhao X, Zhu P, Wang G. Electrochim Acta, 2018, 265: 221.

[9]

Paul R, Zhu L, Chen H, Qu J, Dai L. Adv. Mater., 2019, 31: e1806403.

[10]

Hu C, Lin Y, Connell J W, Cheng H M, Gogotsi Y, Titirici M M, Dai L. Adv. Mater., 2019, 31: e1806128.

[11]

Li B Q, Zhao C X, Liu J N, Zhang Q. Adv. Mater., 2019, 31: e1808173.

[12]

Wang R, Zhang X, Li F, Cao D, Pu M, Han D, Yang J, Xiang X. Journal of Energy Chemistry, 2018, 27: 343.

[13]

Liu T, Wang K, Song S, Brouzgou A, Tsiakaras P, Wang Y. Electrochim. Acta, 201, 194: 228.

[14]

Yu J, Lu Y, Yuan C, Zhao J, Wang M, Liu R. Electrochim. Acta, 2014, 143: 1.

[15]

Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Adv. Mater., 2019, 31: e1804799.

[16]

Reyes-Cruzaley A P, Félix-Navarro R M, Trujillo-Navarrete B, Silva-Carrillo C, Zapata-Fernández J R, Romo-Herrera J M, Contreras O E, Reynoso-Soto E A. Electrochim. Acta, 2019, 296: 575.

[17]

Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P. Chem, 2018, 4: 106.

[18]

Xia G, Lu Y, Xu H. Electrochim. Acta, 2015, 158: 390.

[19]

Liao Z, Lan Y, Wang K, Lei M, Liao Y, Mao H, Ma J, Zhao S. Chemical Research in Chinese Universities, 2018, 34(2): 285.

[20]

Byers J C, Guell A G, Unwin P R. J. Am. Chem. Soc., 2014, 136: 11252.

[21]

Tang Q, Wang D, Yao D M, Yang C W, Sun Y C. Water Sci. Technol., 201, 73: 1652.

[22]

Wagner M, Rebis T, Inganäs O. J. Power Sources, 201, 302: 324.

[23]

Ajjan F N, Jafari M J, Rębiś T, Ederth T, Inganäs O. J. Mater. Chem. A, 2015, 3: 12927.

[24]

Kim H I, Choi Y, Hu S, Choi W, Kim J-H. Appl. Catal. B, 2018, 229: 121.

[25]

Huang H, Han C, Wang G, Feng C. Electrochimica Acta, 2018, 259: 637.

[26]

Dai B, Wang J, Xiong Z, Zhan X, Dai W, Li C C, Feng S P, Tang J. Nat. Nanotechnol, 201, 11: 1087.

[27]

Gong Z, Zhang G, Wang S. Journal of Chemistry, 2013, 2013: 1.

[28]

Jürmann G, Schiffrin D J, Tammeveski K. Electrochim. Acta, 2007, 53: 390.

[29]

Li Q, Liu H, Zhou D, Zheng W, Wu Z, Ma Y. Phys. Chem. Chem. Phys., 2012, 14: 13081.

[30]

Kocak I, Ghanem M A, Al-Mayouf A, Alhoshan M, Bartlett P N. J. Electroanal. Chem., 2013, 706: 25.

[31]

Mooste M, Kibena-Põldsepp E, Matisen L, Tammeveski K. Electroanalysis, 2017, 29: 548.

[32]

Mussi V, Biale C, Visentin S, Barbero N, Rocchia M, Valbusa U. Carbon, 2010, 48: 3391.

[33]

Manisankar P, Gomathi A. Electroanalysis, 2005, 17: 1051.

[34]

Barazesh J M, Hennebel T, Jasper J T, Sedlak D L. Environ. Sci. Technol., 2015, 49: 7391.

[35]

Zhao L, Wang W, Wang A, Yu Z, Chen S, Yang Y. J. Electrochem. Soc., 2011, 158: A991.

[36]

Fernandes D M, Nunes M, Bachiller-Baeza B, Rodríguez-Ramos I, Guerrero-Ruiz A, Delerue-Matos C, Freire C. J. Solid State Electrochem, 201, 21: 1059.

[37]

Sheng X, Daems N, Geboes B, Kurttepeli M, Bals S, Breugelmans T, Hubin A, Vankelecom I F J, Pescarmona P P. Appl. Catal. B, 2015, 176/177: 212.

[38]

Yu F, Wang Y, Ma H. J. Electroanal. Chem., 2019, 838: 57.

[39]

Lee Y H, Li F, Chang K H, Hu C C, Ohsaka T. Appl. Catal. B, 2012, 126: 208.

[40]

Song C B, Qiang Y H, Zhao Y L, Gu X Q, Song D M, Zhu L. Appl. Surf. Sci., 2014, 305: 792.

[41]

Karthikeyan R, Wang B, Xuan J, Wong J W C, Lee P K H, Leung M K H. Electrochimica Acta, 2015, 157: 314.

[42]

Wei Z, Liu M, Zhang Z, Yao W, Tan H, Zhu Y. Energy & Environmental Science, 2018, 11: 2581.

[43]

Zhou W, Meng X, Rajic L, Xue Y, Chen S, Ding Y, Kou K, Wang Y, Gao J, Qin Y, Alshawabkeh A N. Electrochem. Commun, 2018, 96: 37.

[44]

Thiyagarajan N, Janmanchi D, Tsai Y F, Wanna W H, Ramu R, Chan S I, Zen J M, Yu S S. Angew. Chem. Int. Ed. Engl., 2018, 57: 3612.

[45]

Fu S, Zhu C, Song J, Engelhard M H, Xia H, Du D, Lin Y. ACS Appl. Mater. Interfaces, 201, 8: 35213.

[46]

Huang B, Liu Y, Xie Z. J. Mate. Chem. A, 2017, 5: 23481.

[47]

Shen Y, Peng F, Cao Y, Zuo J, Wang H, Yu H. Journal of Energy Chemistry, 2019, 34: 33.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/