Intercalation-assisted Exfoliation Strategy for Two-dimensional Materials Preparation

Yingcheng Zhao , Yueqi Su , Yuqiao Guo , Changzheng Wu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 518 -524.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 518 -524. DOI: 10.1007/s40242-020-0159-2
Review

Intercalation-assisted Exfoliation Strategy for Two-dimensional Materials Preparation

Author information +
History +
PDF

Abstract

Controlled large-quantity synthesis of two-dimensional materials is vital for the research on their physical and chemical characters and potential applications. Utilizing structural features of layered compounds, intercalation of molecules or ions can be applied to the acceleration of liquid-phase exfoliation. In this review, we aim at recent progress on synthesis of two-dimensional materials via intercalation-assisted exfoliation strategy. Works on wet chemical intercalation and electrochemical intercalation, together with product exfoliation afterwards, are summarized. Furthermore, the features and advantages of intercalation-assisted exfoliation strategy for two-dimensional materials synthesis are discussed.

Keywords

Two-dimensional material / Liquid-phase exfoliation / Intercalation

Cite this article

Download citation ▾
Yingcheng Zhao, Yueqi Su, Yuqiao Guo, Changzheng Wu. Intercalation-assisted Exfoliation Strategy for Two-dimensional Materials Preparation. Chemical Research in Chinese Universities, 2020, 36(4): 518-524 DOI:10.1007/s40242-020-0159-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Das Sarma S, Adam S, Hwang E H, Rossi E. Rev. Mod. Phys., 2011, 83(2): 407.

[2]

Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105(13): 136805.

[3]

Ithurria S, Tessier M D, Mahler B, Lobo R, Dubertret B, Efros A. Nat. Mater., 2011, 10(12): 936.

[4]

Li L K, Ye G J, Tran V, Fei R X, Chen G R, Wang H C, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X H, Zhang Y B. Nat. Nanotech., 2015, 10(7): 608.

[5]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438(7065): 197.

[6]

Hwang E H, Adam S, Das Sarma S. Phys. Rev. Lett., 2007, 98(18): 186806.

[7]

Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Angew. Chem. Int. Ed., 2009, 48(42): 7752.

[8]

Frindt R. Phys. Rev. Lett., 1972, 28(5): 299.

[9]

Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

[10]

Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D. Nature, 2017, 546(7657): 270.

[11]

Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331(6017): 568.

[12]

Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N. Adv. Mater., 2011, 23(34): 3944.

[13]

Zheng J, Zhang H, Dong S H, Liu Y P, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P. Nat. Commun., 2014, 5: 2995.

[14]

Joensen P, Frindt R F, Morrison S R. Mater. Res. Bull., 198, 21(4): 457.

[15]

Dresselhaus M S. Intercalation in Layered Materials, 2013, Boston: Springer

[16]

Feng J, Sun X, Wu C Z, Peng L L, Lin C W, Hu S L, Yang J L, Xie Y. J. Am. Chem. Soc., 2011, 133(44): 17832.

[17]

Guan G J, Zhang S Y, Liu S H, Cai Y Q, Low M, Teng C P, Phang I Y, Cheng Y, Duei K L, Srinivasan B M, Zheng Y G, Zhang Y W, Han M Y. J. Am. Chem. Soc., 2015, 137(19): 6152.

[18]

Jeong S, Yoo D, Ahn M, Miro P, Heine T, Cheon J. Nat. Commun., 2015, 6: 5763.

[19]

Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80(6): 1339.

[20]

Chen J, Yao B W, Li C, Shi G Q. Carbon, 2013, 64: 225.

[21]

Geng X M, Guo Y F, Li D F, Li W W, Zhu C, Wei X F, Chen M L, Gao S, Qiu S Q, Gong Y P, Wu L Q, Long M S, Sun M T, Pan G B, Liu L W. Sci. Rep., 2013, 3: 1134.

[22]

Ding Y J, Chen Y P, Zhang X L, Chen L, Dong Z H, Jiang H L, Xu H X, Zhou H C. J. Am. Chem. Soc., 2017, 139(27): 9136.

[23]

Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. Angew. Chem. Int. Ed., 2010, 49(24): 4059.

[24]

Fan X B, Xu P T, Zhou D K, Sun Y F, Li Y G C, Nguyen M A T, Terrones M, Mallouk T E. Nano Lett., 2015, 15(9): 5956.

[25]

Cullen P L, Cox K M, Bin Subhan M K, Picco L, Payton O D, Buckley D J, Miller T S, Hodge S A, Skipper N T, Tileli V, Howard C A. Nat. Chem., 2017, 9(3): 244.

[26]

Peng J, Wu J J, Li X T, Zhou Y, Yu Z, Guo Y Q, Wu J C, Lin Y, Li Z J, Wu X J, Wu C Z, Xie Y. J. Am. Chem. Soc., 2017, 139(26): 9019.

[27]

Fan X B, Xu P T, Li Y C, Zhou D K, Sun Y F, Nguyen M A T, Terrones M, Mallouk T E. J. Am. Chem. Soc., 201, 138(15): 5143.

[28]

Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H. Angew. Chem. Int. Ed., 2011, 50(47): 11093.

[29]

Azhagurajan M, Kajita T, Itoh T, Kim Y G, Itaya K. J. Am. Chem. Soc., 201, 138(10): 3355.

[30]

Duerloo K A N, Li Y, Reed E J. Nat. Commun., 2014, 5: 4214.

[31]

Li Y, Duerloo K A N, Wauson K, Reed E J. Nat. Commun., 201, 7: 10671.

[32]

Yu Y F, Nam G H, He Q Y, Wu X J, Zhang K, Yang Z Z, Chen J Z, Ma Q L, Zhao M T, Liu Z Q, Ran F R, Wang X Z, Li H, Huang X, Li B, Xiong Q H, Zhang Q, Liu Z, Gu L, Du Y H, Huang W, Zhang H. Nat. Chem., 2018, 10(6): 638.

[33]

Cao X H, Tan C L, Zhang X, Zhao W, Zhang H. Adv. Mater., 201, 28(29): 6167.

[34]

Kang Y M, Najmaei S, Liu Z, Bao Y J, Wang Y M, Zhu X, Halas N J, Nordlander P, Ajayan P M, Lou J, Fang Z Y. Adv. Mater., 2014, 26(37): 6467.

[35]

Acerce M, Voiry D, Chhowalla M. Nat. Nanotech., 2015, 10(4): 313.

[36]

Peng J, Liu Y H, Luo X, Wu J J, Lin Y, Guo Y Q, Zhao J Y, Wu X J, Wu C Z, Xie Y. Adv. Mater., 2019, 31(19): 1900568.

[37]

Nakamura S, Mukai T, Senoh M. Jap. J. Appl. Phys., 1991, 30(12A): L1998.

[38]

Koizumi S, Watanabe K, Hasegawa M, Kanda H. Science, 2001, 292(5523): 1899.

[39]

Williams J, DiCarlo L, Marcus C. Science, 2007, 317(5838): 638.

[40]

Wu J J, Peng J, Zhou Y, Lin Y, Wen X L, Wu J C, Zhao Y C, Guo Y Q, Wu C Z, Xie Y. J. Am. Chem. Soc., 2019, 141(1): 592.

[41]

Coker A, Lee T, Das T P. Phys. Rev. B, 1980, 22(6): 2968.

[42]

Zhu Z L, Cai X L, Yi S H, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y, Zhang Z Y. Phys. Rev. Lett., 2017, 119(10): 106101.

[43]

Wu B Z, Liu X H, Yin J R, Lee H. Mater. Res. Express, 2017, 4(9): 095902.

[44]

Wang Y, Qiu G, Wang R, Huang S, Wang Q, Liu Y, Du Y, Goddard W A, Kim M J, Xu X, Ye P D, Wu W. Nat. Electron., 2018, 1(4): 228.

[45]

Gao Z B, Tao F, Ren J. Nanoscale, 2018, 10(27): 12997.

[46]

Wang Q S, Safdar M, Xu K, Mirza M, Wang Z X, He J. ACS Nano, 2014, 8(7): 7497.

[47]

Liu Y Y, Wu W Z, Goddard W A. J. Am. Chem. Soc., 2018, 140(2): 550.

[48]

Peng J, Pan Y, Yu Z, Wu J J, Wu J C, Zhou Y, Guo Y Q, Wu X J, Wu C Z, Xie Y. Angew. Chem. Int. Ed., 2018, 57(41): 13533.

[49]

Wu J J, Peng J, Yu Z, Zhou Y, Guo Y Q, Li Z J, Lin Y, Ruan K Q, Wu C Z, Xie Y. J. Am. Chem. Soc., 2018, 140(1): 493.

[50]

Lin C W, Zhu X J, Feng J, Wu C Z, Hu S L, Peng J, Guo Y Q, Peng L L, Zhao J Y, Huang J L, Yang J L, Xie Y. J. Am. Chem. Soc., 2013, 135(13): 5144.

[51]

Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11(12): 5111.

[52]

Park M J, Gravelsins S, Son J, van der Zande A M, Dhirani A. ACS Nano, 2019, 13(6): 6469.

[53]

Peng J, Yu Z, Wu J J, Zhou Y, Guo Y Q, Li Z J, Zhao J Y, Wu C Z, Xie Y. ACS Nano, 2018, 12(9): 9461.

[54]

Zhang Y Q, Dong N N, Tao H C, Yan C, Huang J W, Liu T F, Robertson A W, Texter J, Wang J, Sun Z Y. Chem. Mater., 2017, 29(15): 6445.

[55]

Lotya M, Hernandez Y, King P J, Smith R J, Nicolosi V, Karlsson L S, Blighe F M, De S, Wang Z M, McGovern I T, Duesberg G S, Coleman J N. J. Am. Chem. Soc., 2019, 131(10): 3611.

[56]

Zhu P N, Nair S, Peng S J, Yang S Y, Ramakrishna S. ACS Appl. Mater. Interfaces, 2012, 4(2): 581.

[57]

Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J Z, Minett A I, Nicolosi V, Coleman J N. Adv. Mater., 2011, 23(34): 3944.

[58]

Su C, Yin Z Y, Yan Q B, Wang Z G, Lin H T, Sun L, Xu W S, Yamada T, Ji X, Zettsu N, Teshima K, Warner J H, Dinca M, Hu J J, Dong M D, Su G, Kong J, Li J. Proc. Natl. Acad. Sci. USA, 2019, 116(42): 20844.

[59]

Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Freddy B, Zhang H. Angew. Chem. Int. Ed., 2011, 50(47): 11093.

[60]

Lin Z Y, Liu Y, Udayabagya H, Ding M N, Liu Y Y, Wang Y L, Jia C C, Chen P, Duan X D, Wang C, Song F, Li M F, Wan C Z, Huang Y, Duan X F. Nature, 2018, 562: 254.

[61]

Shi H H, Li M M, Nia A S, Wang M C, Park S, Zhang Z, Lohe M R, Yang S, Feng X L. Adv. Mater., 2020, 32(8): 1907244.

[62]

Yu W, Li J, Tun S H, Wang Z S, Zhao X X, Chi X, Fu W, Ibrahim A, Zhou J, Dan J D, Chen Z X, Chen Z, Li Z J, Lu J, Stephen J P, Feng Y P, Ding J, Kian P L. Adv. Mater., 2019, 31(40): 1903779.

[63]

Campeon B D L, Akada M, Ahmad M S, Nishikawa Y, Gotoh K, Nishina Y. Carbon, 2020, 158: 356.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/