Chemical Synthesis of Proteins Containing 300 Amino Acids

Baochang Zhang , Yulei Li , Weiwei Shi , Tongyue Wang , Feng Zhang , Lei Liu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 733 -747.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (5) : 733 -747. DOI: 10.1007/s40242-020-0150-y
Review

Chemical Synthesis of Proteins Containing 300 Amino Acids

Author information +
History +
PDF

Abstract

Chemical synthesis of proteins containing up to 300 amino acids may cover 30%–50% of all the proteins encountered in biomedical studies and may provide an alternate approach to the usually used recombinant expression technology, vastly expanding the chemical space of the latter. In the present review article, we tried to survey the recent progresses made for more rapid synthesis of increasingly long peptides and more efficient ligation of multiple peptide segments. The developments of seminal methods by many research groups have greatly contributed to the recent breakthroughs in the successful total synthesis of a number of functionally important proteins, such as oligou-biquitins, bacterial GroEL/ES chaperones, and mirror-image DNA polymerases. Through these studies, a potential bottleneck has also been recognized for the chemical synthesis of large proteins, namely, how to ensure that each peptide segment from a large protein avoids unfavorable aggregation when dissolved in aqueous solution. Many new methods, such as removable backbone modification(RBM) strategy have been developed to overcome this bottleneck, while more studies need to be carried out to develop more effective and less costly methods that ultimately, may lead to fully automatable chemical synthesis of customized proteins of 300 amino acids bearing any artificial designs.

Keywords

Chemical protein synthesis / Solid-phase synthesis / Peptide / Ligation / 300 amino acid

Cite this article

Download citation ▾
Baochang Zhang, Yulei Li, Weiwei Shi, Tongyue Wang, Feng Zhang, Lei Liu. Chemical Synthesis of Proteins Containing 300 Amino Acids. Chemical Research in Chinese Universities, 2020, 36(5): 733-747 DOI:10.1007/s40242-020-0150-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kulkarni S S, Sayers J, Premdjee B, Payne R J. Nat. Rev. Chem., 2018, 2: 0122.

[2]

Conibear A C, Watson E E, Payne R J, Becker C F W. Chem. Soc. Rev., 2018, 47: 9046.

[3]

Sun H, Brik A. Acc. Chem. Res., 2019, 52: 3361.

[4]

Bondalapati S, Jbara M, Brik A. Nat. Chem., 201, 8: 407.

[5]

Kent S B H. Bioorg. Med. Chem., 2017, 25: 4926.

[6]

Yang J, Zhao J. Sci. China Chem, 2018, 61: 97.

[7]

Kent S B H. Chem. Soc. Rev., 2009, 38: 338.

[8]

Kumar K S A, Bavikar S N, Spasser L, Moyal T, Ohayon S, Brik A. Angew. Chem. Int. Ed., 2011, 50: 6137.

[9]

Weinstock M T, Jacobsen M T, Kay M S. Proc. Natl. Acad. Sci. USA, 2014, 111: 11679.

[10]

Pech A, Achenbach J, Jahnz M, Schülzchen S, Jarosch F, Bordusa F, Klussmann S. Nucleic Acids Res., 2017, 45: 3997.

[11]

Xu W, Jiang W, Wang J, Yu L, Chen J, Liu X, Liu L, Zhu T F. Cell Discovery, 2017, 3: 17008.

[12]

Jiang W, Zhang B, Fan C, Wang M, Wang J, Deng Q, Liu X, Chen J, Zheng J, Liu L, Zhu T F. Cell Discovery, 2017, 3: 17037.

[13]

Hojo H. Org. Biomol. Chem., 201, 14: 6368.

[14]

Bode J W. Acc. Chem. Res., 2017, 50: 2104.

[15]

Liu H, Li X. Acc. Chem. Res., 2018, 51: 1643.

[16]

Xu S, Zhao Z, Zhao J. Chin. Chem. Lett., 2018, 29: 1009.

[17]

Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu J C M, Melnyk O. Chem. Rev., 2019, 119: 7328.

[18]

Olschewski D, Becker C F W. Mol. Biosyst., 2008, 4: 733.

[19]

Li J B, Tang S, Zheng J S, Tian C L, Liu L. Acc. Chem. Res., 2017, 50: 1143.

[20]

Yoshiya T, Tsuda S, Masuda S. ChemBioChem, 2019, 20: 1906.

[21]

Wang S, Thopate Y A, Zhou Q, Wang P. Chin. J. Chem., 2019, 37: 1181.

[22]

Pedersen S L, Tofteng A P, Malik L, Jensen K J. Chem. Soc. Rev., 2012, 41: 1826.

[23]

Coantic S, Subra G, Martinez J. Int. J. Pept. Res. Ther., 2008, 14: 143.

[24]

Palasek S A, Cox Z J, Collins J M. J. Pept. Sci., 2007, 13: 143.

[25]

Rodriguez H, Suarez M, Albericio F. J. Pept. Sci., 2010, 16: 136.

[26]

Ben Haj Salah K, Inguimbert N. Org. Lett., 2014, 16: 1783.

[27]

Malik L, Tofteng A P, Pedersen S L, Sørensen K K, Jensen K J. J. Pept. Sci., 2010, 16: 506.

[28]

Singer D, Zauner T, Genz M, Hoffmann R, Zuchner T. J. Pept. Sci., 2010, 16: 358.

[29]

Qu Q, Pan M, Gao S, Zheng Q Y, Yu Y Y, Su J C, Li X, Hu H G. Adv. Sci., 2018, 5: 1800234.

[30]

Lu L, Guo Y, Wang T, Liang L, Zhao S, Wang F, Liu L. Sci. China Chem., 2020, 63: 237.

[31]

Huang Y C, Fang G M, Liu L. Natl. Sci. Rev., 201, 3: 107.

[32]

Gordon C P. Org. Biomol. Chem., 2018, 16: 180.

[33]

Lücke D, Dalton T, Ley S V, Wilson Z E. Chem. Eur. J., 201, 22: 4206.

[34]

Mijalis A J, Thomas D A, Simon M D, Adamo A, Beaumont R, Jensen K F, Pentelute B L. Nat. Chem. Biol., 2017, 13: 464.

[35]

Mándity I M, Olasz B, Ötvös S B, Fülöp F. ChemSusChem, 2014, 7: 3172.

[36]

Dawson P E, Muir T W, Clark-Lewis I, Kent S B. Science, 1994, 266: 776.

[37]

Yan L Z, Dawson P E. J. Am. Chem. Soc., 2001, 123: 526.

[38]

Wan Q, Danishefsky S J. Angew. Chem. Int. Ed., 2007, 46: 9248.

[39]

Jin K, Li T, Chow H Y, Liu H, Li X. Angew. Chem. Int. Ed., 2017, 56: 14607.

[40]

Huang Y, Liu L. Sci. China Chem., 2015, 58: 1779.

[41]

Botti P, Villain M, Manganiello S, Gaertner H. Org. Lett., 2004, 6: 4861.

[42]

Warren J D, Miller J S, Keding S J, Danishefsky S J. J. Am. Chem. Soc., 2004, 126: 6576.

[43]

Zheng J S, Chang H N, Shi J, Liu L. Sci. China Chem., 2012, 55: 64.

[44]

Zheng J S, Cui H K, Fang G M, Xi W X, Liu L. ChemBioChem, 2010, 11: 511.

[45]

Tsuda S, Shigenaga A, Bando K, Otaka A. Org. Lett., 2009, 11: 823.

[46]

Ollivier N, Dheur J, Mhidia R, Blanpain A, Melnyk O. Org. Lett., 2010, 12: 5238.

[47]

Dheur J, Ollivier N, Vallin A, Melnyk O. J. Org. Chem., 2011, 76: 3194.

[48]

Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133: 11080.

[49]

Ingenito R, Bianchi E, Fattori D, Pessi A. J. Am. Chem. Soc., 1999, 121: 11369.

[50]

Shin Y, Winans K A, Backes B J, Kent S B H, Ellman J A, Bertozzi C R. J. Am. Chem. Soc., 1999, 121: 11684.

[51]

Blanco-Canosa J B, Dawson P E. Angew. Chem. Int. Ed., 2008, 47: 6851.

[52]

Siman P, Karthikeyan S V, Nikolov M, Fischle W, Brik A. Angew. Chem. Int. Ed., 2013, 52: 8059.

[53]

Ansaloni A, Wang Z M, Jeong J S, Ruggeri F S, Dietler G, Lashuel H A. Angew. Chem. Int. Ed., 2014, 53: 1928.

[54]

Wang J X, Fang G M, He Y, Qu D L, Yu M, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2015, 54: 2194.

[55]

Tofteng A P, Sørensen K K, Conde-Frieboes K W, Hoeg-Jensen T, Jensen K J. Angew. Chem. Int. Ed., 2009, 48: 7411.

[56]

Nilsson B L, Kiessling L L, Raines R T. Org. Lett., 2000, 2: 1939.

[57]

Zhang Y, Xu C, Lam H Y, Lee C L, Li X. Proc. Natl. Acad. Sci. USA, 2013, 110: 6657.

[58]

Li T, Liu H, Li X. Org. Lett., 201, 18: 5944.

[59]

Xu C, Xu J, Liu H, Li X. Chin. Chem. Lett., 2018, 29: 1119.

[60]

Huang D L, Montigny C, Zheng Y, Beswick V, Li Y, Cao X X, Barbot T, Jaxel C, Liang J, Xue M, Tian C L, Jamin N, Zheng J S. Angew. Chem. Int. Ed., 2020, 59: 5178.

[61]

Pusterla I, Bode J W. Nat. Chem., 2015, 7: 668.

[62]

Pattabiraman V R, Ogunkoya A O, Bode J W. Angew. Chem. Int. Ed., 2012, 51: 5114.

[63]

Baldauf S, Schauenburg D, Bode J W. Angew. Chem. Int. Ed., 2019, 58: 12599.

[64]

Wucherpfennig T G, Pattabiraman V R, Limberg F R P, Ruiz-Rodriguez J, Bode J W. Angew. Chem. Int. Ed., 2014, 53: 12248.

[65]

Mitchell N J, Malins L R, Liu X, Thompson R E, Chan B, Radom L, Payne R J. J. Am. Chem. Soc., 2015, 137: 14011.

[66]

Mitchell N J, Sayers J, Kulkarni S S, Clayton D, Goldys A M, Ripoll-Rozada J, Pereira P J B, Chan B, Radom L, Payne R J. Chem., 2017, 2: 703.

[67]

Sayers J, Karpati P M T, Mitchell N J, Goldys A M, Kwong S M, Firth N, Chan B, Payne R J. J. Am. Chem. Soc., 2018, 140: 13327.

[68]

Kulkarni S S, Watson E E, Premdjee B, Conde-Frieboes K W, Payne R J. Nat. Protoc., 2019, 14: 2229.

[69]

Chisholm T S, Kulkarni S S, Hossain K R, Cornelius F, Clarke R J, Payne R J. J. Am. Chem. Soc., 2020, 142: 1090.

[70]

Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645.

[71]

Flood D T, Hintzen J C J, Bird M J, Cistrone P A, Chen J S, Dawson P E. Angew. Chem. Int. Ed., 2018, 57: 11634.

[72]

Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8: 2483.

[73]

Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51: 10347.

[74]

Chu G C, Pan M, Li J, Liu S, Zuo C, Tong Z B, Bai J S, Gong Q, Ai H, Fan J, Meng X, Huang Y C, Shi J, Deng H, Tian C, Li Y M, Liu L. J. Am. Chem. Soc., 2019, 141: 3654.

[75]

Zhang B, Deng Q, Zuo C, Yan B, Zuo C, Cao X X, Zhu T F, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2019, 58: 12231.

[76]

Li Y M, Yang M Y, Huang Y C, Li Y T, Chen P R, Liu L. ACS Chem. Biol., 2012, 7: 1015.

[77]

Adams A L, Cowper B, Morgan R E, Premdjee B, Caddick S, Macmillan D. Angew. Chem. Int. Ed., 2013, 52: 13062.

[78]

Liang J, Fang G, Huang X, Mei Z, Li J, Tian C, Liu L. Sci. China Chem., 2013, 56: 1301.

[79]

Casadio F, Lu X, Pollock S B, LeRoy G, Garcia B A, Muir T W, Roeder R G, Allis C D. Proc. Natl. Acad. Sci. USA, 2013, 110: 14894.

[80]

Li J, Li Y, He Q, Li Y, Li H, Liu L. Org. Biomol. Chem., 2014, 12: 5435.

[81]

Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53: 2198.

[82]

Mong S K, Vinogradov A A, Simon M D, Pentelute B L. ChemBioChem, 2014, 15: 721.

[83]

Pan M, He Y, Wen M, Wu F, Sun D, Li S, Zhang L, Li Y, Tian C. Chem. Commun., 2014, 50: 5837.

[84]

Reif A, Siebenhaar S, Tröster A, Schmälzlein M, Lechner C, Velisetty P, Gottwald K, Pöhner C, Boos I, Schubert V, Rose-John S, Unverzagt C. Angew. Chem. Int. Ed., 2014, 53: 12125.

[85]

Simon M D, Heider P L, Adamo A, Vinogradov A A, Mong S K, Li X, Berger T, Policarpo R L, Zhang C, Zou Y, Liao X, Spokoyny A M, Jensen K F, Pentelute B L. ChemBioChem, 2014, 15: 713.

[86]

Murakami M, Kiuchi T, Nishihara M, Tezuka K, Okamoto R, Izumi M, Kajihara Y. Sci. Adv., 201, 2: e1500678.

[87]

Pan M, Gao S, Zheng Y, Tan X, Lan H, Tan X, Sun D, Lu L, Wang T, Zheng Q, Huang Y, Wang J, Liu L. J. Am. Chem. Soc., 201, 138: 7429.

[88]

Pedersen S W, Moran G E, Sereikaitė V, Haugaard-Kedström L M, Stramgaard K. ChemBioChem, 201, 17: 1936.

[89]

Petersen M E, Jacobsen M T, Kay M S. Org. Biomol. Chem., 201, 14: 5298.

[90]

Qi Y K, Tang S, Huang Y C, Pan M, Zheng J S, Liu L. Org. Biomol. Chem., 201, 14: 4194.

[91]

Tailhades J, Sethi A, Petrie E J, Gooley P R, Bathgate R A, Wade J D, Hossain M A. Chem. Eur. J., 201, 22: 1146.

[92]

Tang S, Wan Z, Gao Y, Zheng J S, Wang J, Si Y Y, Chen X, Qi H, Liu L, Liu W. Chem. Sci., 201, 7: 1891.

[93]

Gao S, Pan M, Zheng Y, Huang Y, Zheng Q, Sun D, Lu L, Tan X, Tan X, Lan H, Wang J, Wang T, Wang J, Liu L. J. Am. Chem. Soc., 201, 138: 14497.

[94]

Fang G M, Chen X X, Yang Q Q, Zhu L J, Li N N, Yu H Z, Meng X M. Chin. Chem. Lett., 2018, 29: 1033.

[95]

Wang Y J, Szantai-Kis D M, Petersson E J. Org. Biomol. Chem., 201, 14: 6262.

[96]

Wang Z, Xu W, Liu L, Zhu T F. Nat. Chem., 201, 8: 698.

[97]

Weller C E, Dhall A, Ding F, Linares E, Whedon S D, Senger N A, Tyson E L, Bagert J D, Li X, Augusto O, Chatteijee C. Nat. Commun., 201, 7: 12979.

[98]

Xie R L, Xu L, Li J B, Chu G C, Wang T, Huang Y C, Li Y M. Eur. J. Org. Chem., 201, 2016: 2665.

[99]

Xu L, Xu Y, Qu Q, Guan C J, Chu G C, Shi J, Li Y M. RSC Adv., 201, 6: 47926.

[100]

Zheng J S, He Y, Zuo C, Cai X Y, Tang S, Wang Z A, Zhang L H, Tian C L, Liu L. J. Am. Chem. Soc., 201, 138: 3553.

[101]

Zhou L, Holt M T, Ohashi N, Zhao A, Müller M M, Wang B, Muir T W. Nat. Commun., 201, 7: 10589.

[102]

Tornøe C W, Johansson E, Wahlund P O. Synlett, 2017, 28: 1901.

[103]

Tang S, Zuo C, Huang D L, Cai X Y, Zhang L H, Tian C L, Zheng J S, Liu L. Nat. Protoc., 2017, 12: 2554.

[104]

Tang S, Liang L J, Si Y Y, Gao S, Wang J X, Liang J, Mei Z, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2017, 56: 13333.

[105]

Tan X L, Pan M, Zheng Y, Gao S, Liang L J, Li Y M. Chem. Sci., 2017, 8: 6881.

[106]

Tan X D, Pan M, Gao S, Zheng Y, Shi J, Li Y M. Chem. Commun., 2017, 53: 10208.

[107]

Shi L, Chen H, Zhang S Y, Chu T T, Zhao Y F, Chen Y X, Li Y M. J. Pept. Sci., 2017, 23: 438.

[108]

Schmidtgall B, Chaloin O, Bauer V, Sumyk M, Birck C, Torbeev V. Chem. Commun., 2017, 53: 7369.

[109]

Qu Q, Gao S, Li Y M. J. Pept. Sci., 2018, 24: 3112.

[110]

Sato K, Tanaka S, Yamamoto K, Tashiro Y, Narumi T, Mase N. Chem. Commun., 2018, 54: 9127.

[111]

Si Y Y, Liang L J, Tang S, Qi Y K, Huang Y, Zheng J S. Tetrahedron Lett., 2018, 59: 268.

[112]

Sun D, Yu Y, Xue X, Pan M, Wen M, Li S, Qu Q, Li X, Zhang L, Li X, Liu L, Yang M, Tian C. Cell Discovery, 2018, 4: 27.

[113]

Sun H, Meledin R, Mali S M, Brik A. Chem. Sci., 2018, 9: 1661.

[114]

Zuo C, Zhang B, Wu M, Bierer D, Shi J, Fang G M. Chin. Chem. Lett., 2020, 31: 693.

[115]

Zuo C, Shi W W, Chen X X, Glatz M, Riedl B, Flamme I, Pook E, Wang J, Fang G M, Bierer D, Liu L. Sci. China Chem., 2019, 62: 1371.

[116]

Zoukimian C, Meudal H, De Waard S, Ouares K A, Nicolas S, Canepari M, Beroud R, Landon C, De Waard M, Boturyn D. Bioorg. Med. Chem., 2019, 27: 247.

[117]

Zheng Y, Wu F, Ling S, Li J B, Tian C. Chin. Chem. Lett., 2020, 31: 1267.

[118]

Zhao Z, Metanis N. Angew. Chem. Int. Ed., 2019, 58: 14610.

[119]

Zhang Y, Hirota T, Kuwata K, Oishi S, Gramani S G, Bode J W. J. Am. Chem. Soc., 2019, 141: 14742.

[120]

Zhang L, Shen H, Gong Y, Pang X, Yi M, Guo L, Li J, Arroyo S, Lu X, Ovchinnikov S, Cheng G, Liu X, Jiang X, Feng S, Deng H. Chem. Sci., 2019, 10: 3271.

[121]

Xu L, Fan J, Wang Y, Zhang Z, Fu Y, Li Y M, Shi J. Chem. Commun., 2019, 55: 7109.

[122]

Shu K, Iwamoto N, Honda K, Kondoh Y, Hirano H, Osada H, Ohno H, Fujii N, Oishi S. Bioconjug. Chem., 2019, 30: 1395.

[123]

Pan M, Zheng Q, Ding S, Zhang L, Qu Q, Wang T, Hong D, Ren Y, Liang L, Chen C, Mei Z, Liu L. Angew. Chem. Int. Ed., 2019, 58: 2627.

[124]

Mannuthodikayil J, Singh S, Biswas A, Kar A, Tabassum W, Vydyam P, Bhattacharyya M K, Mandal K. Org. Lett., 2019, 21: 9040.

[125]

Lu D, Yin H, Wang S, Tang F, Huang W, Wang P. J. Org. Chem., 2020, 85: 1652.

[126]

Hemantha H P, Bavikar S N, Herman-Bachinsky Y, Haj-Yahya N, Bondalapati S, Ciechanover A, Brik A. J. Am. Chem. Soc., 2014, 136: 2665.

[127]

Wang M, Jiang W, Liu X, Wang J, Zhang B, Fan C, Liu L, Pena-Alcantara G, Ling J J, Chen J, Zhu T F. Chem, 2019, 5: 848.

[128]

Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136: 3695.

[129]

Vinogradov A A, Evans E D, Pentelute B L. Chem. Sci., 2015, 6: 2997.

[130]

Tsuda Y, Shigenaga A, Tsuji K, Denda M, Sato K, Kitakaze K, Nakamura T, Inokuma T, Itoh K, Otaka A. ChemistryOpen, 2015, 4: 448.

[131]

Sun H, Mali S M, Singh S K, Meledin R, Brik A, Kwon Y T, Kravtsova-Ivantsiv Y, Bercovich B, Ciechanover A. Proc. Natl. Acad. Sci. USA, 2019, 116: 7805.

[132]

Seenaiah M, Jbara M, Mali S M, Brik A. Angew. Chem. Int. Ed., 2015, 54: 12374.

[133]

Qi Y K, Chang H N, Pan K M, Tian C L, Zheng J S. Chem. Commun., 2015, 51: 14632.

[134]

Liu L. Isr. J. Chem., 2019, 59: 64.

[135]

Chen X, Tang S, Zheng J S, Zhao R, Wang Z P, Shao W, Chang H N, Cheng J Y, Zhao H, Liu L, Qi H. Nat. Commun., 2015, 6: 7220.

[136]

Jacobsen M T, Petersen M E, Ye X, Galibert M, Lorimer G H, Aucagne V, Kay M S. J. Am. Chem. Soc., 201, 138: 11775.

[137]

Lan H, Wu K, Zheng Y, Pan M, Huang Y C, Gao S, Zheng Q Y, Zheng J S, Li Y M, Xiao B, Liu L. J. Pept. Sci., 201, 22: 320.

[138]

Li Y T, Huang Y C, Xu Y, Pan M, Li Y M. Tetrahedron, 201, 72: 4085.

[139]

Lühmann T, Mong S K, Simon M D, Meinel L, Pentelute B L. Org. Biomol. Chem., 201, 14: 3345.

[140]

Maity S K, Jbara M, Brik A. J. Pept. Sci., 201, 22: 252.

[141]

Qi Y K, He Q Q, Ai H S, Li J B, Zheng J S. Synlett, 2017, 28: 1907.

[142]

Noguchi T, Ishiba H, Honda K, Kondoh Y, Osada H, Ohno H, Fujii N, Oishi S. Bioconjug. Chem., 2017, 28: 609.

[143]

Qi Y K, He Q Q, Ai H S, Guo J, Li J B. Chem. Commun., 2017, 53: 4148.

[144]

Liang J, Zhang L, Tan X L, Qi Y K, Feng S, Deng H, Yan Y, Zheng J S, Liu L, Tian C L. Angew. Chem. Int. Ed., 2017, 56: 2744.

[145]

He Q, Li J, Qi Y, Wang Z, Huang Y, Liu L. Sci. China Chem., 2017, 60: 621.

[146]

Li J, He Q, Liu Y, Liu S, Tang S, Li C, Sun D, Li X, Zhou M, Zhu P, Bi G, Zhou Z, Zheng J S, Tian C. ChemBioChem, 2017, 18: 176.

[147]

Jbara M, Guttmann-Raviv N, Maity S K, Ayoub N, Brik A. Bioorg. Med. Chem., 2017, 25: 4966.

[148]

Buhler S, Akkerdaas J H, Pertinhez T A, Van Ree R, Dossena A, Sforza S, Tedeschi T. J. Pept. Sci., 2017, 23: 282.

[149]

Chu G C, Bai J S, Kong Y F, Fan J, Sun S S, Xu H J, Shi J, Li Y M. Tetrahedron, 2018, 74: 3931.

[150]

Dhall A, Weller C E, Chu A, Shelton P M M, Chatterjee C. ACS Chem. Biol., 2017, 12: 2275.

[151]

de Araujo A D, Wu C, Wu K C, Reid R C, Durek T, Lim J, Fairlie D P. Bioconjug. Chem., 2017, 28: 1669.

[152]

Hayashi G, Kamo N, Okamoto A. Chem. Commun., 2017, 53: 5918.

[153]

Kamo N, Hayashi G, Okamoto A. Chem. Commun., 2018, 54: 4337.

[154]

Chen C C, Gao S, Ai H S, Qu Q, Tian C L, Li Y M. Sci. China Chem., 2018, 61: 702.

[155]

Dhayalan B, Mandal K, Rege N, Weiss M A, Eitel S H, Meier T, Schoenleber R O, Kent S B H. Chem. Eur. J., 2017, 23: 1709.

[156]

Haj-Yahya M, Lashuel H A. J. Am. Chem. Soc., 2018, 140: 6611.

[157]

Guo X Q, Liang J, Li Y, Zhang Y, Huang D, Tian C. Chin. Chem. Lett., 2018, 29: 1139.

[158]

He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W, Shao Y, Hou P. ACSNano, 2018, 12: 11664.

[159]

Kilic S, Boichenko I, Lechner C C, Fierz B. Chem. Sci., 2018, 9: 3704.

[160]

Liang L J, Si Y, Tang S, Huang D, Wang Z A, Tian C, Zheng J S. Chin. Chem. Lett., 2018, 29: 1155.

[161]

Li J B, Qi Y K, He Q Q, Ai H S, Liu S L, Wang J X, Zheng J S, Liu L, Tian C. Cell Res., 2018, 28: 257.

[162]

Liu J, Dong S. Chin. Chem. Lett., 2018, 29: 1131.

[163]

Hua X, Bai J S, Kong Y F, Chu G C, Shi J, Li Y M. Tetrahedron Lett., 2019, 60: 151123.

[164]

Liang J, Gong Q, Li Y, Zheng Y, Zheng J S, Tian C, Li J B. Chem. Commun., 2019, 55: 12639.

[165]

Guidotti N, Lechner C C, Bachmann A L, Fierz B. ChemBioChem, 2019, 20: 1124.

[166]

Hartmann L, Botzanowski T, Galibert M, Jullian M, Chabrol E, Zeder-Lutz G, Kugler V, Stojko J, Strub J M, Ferry G, Frankiewicz L, Puget K, Wagner R, Cianferani S, Boutin J A. Protein Sci., 2019, 28: 1865.

[167]

Guo Q Y, Zhang L H, Zuo C, Huang D L, Wang Z A, Zheng J S, Tian C L. Protein & Cell, 2019, 10: 211.

[168]

Fulcher J M, Petersen M E, Giesler R J, Cruz Z S, Eckert D M, Francis J N, Kawamoto E M, Jacobsen M T, Kay M S. Org. Biomol. Chem., 2019, 17: 10237.

[169]

Dao Y, Han L, Wang H, Dong S. Org. Lett., 2019, 21: 3265.

[170]

De Rosa L, Di Stasi R, D’Andrea L D. Tetrahedron, 2019, 75: 894.

[171]

Chu G C, Hua X, Zuo C, Chen C C, Meng X B, Zhang Z, Fu Y, Shi J, Li Y M. Chem. Eur. J., 2019, 25: 16668.

[172]

Ai H, Guo Y, Sun D, Liu S, Qi Y, Guo J, Qu Q, Gong Q, Zhao S, Li J, Liu L. ChemBioChem, 2019, 20: 221.

[173]

Baral A, Asokan A, Bauer V, Kieffer B, Torbeev V. Tetrahedron, 2019, 75: 703.

[174]

Cai Z, Wei Q, Li X, Luan Y, Dong S. J. Org. Chem., 2020, 85: 1740.

[175]

Brown Z Z, Mapelli C, Farasat I, Shoultz A V, Johnson S A, Orvieto F, Santoprete A, Bianchi E, McCracken A B, Chen K, Zhu X, Demma M J, Lacey B M, Canada K A, Garbaccio R M, O’Neil J, Walji A. J. Org. Chem., 2020, 85: 1466.

[176]

Lin Q, Hopper D, Zhang H, Qoon J S, Shen Z, Karas J A, Hughes R A, Northfield S E. ACS Omega, 2020, 5: 1840.

[177]

Ling J J, Fan C, Qin H, Wang M, Chen J, Wittung-Stafshede P, Zhu T F. Angew. Chem. Int. Ed., 2020, 59: 3724.

[178]

Mivelaz M., Fierz B., Methods, 2020, https://doi.org/10.1016/j.ymeth.2020.01.018

[179]

Wu Y, Li Y, Cong W, Zou Y, Li X, Hu H. Chin. Chem. Lett., 2020, 31: 107.

[180]

Tang S, Si Y Y, Wang Z P, Mei K R, Chen X, Cheng J Y, Zheng J S, Liu L. Angew. Chem. Int. Ed., 2015, 54: 5713.

[181]

Pan M, Zheng Q, Gao S, Qu Q, Yu Y, Wu M, Lan H, Li Y, Liu S, Li J, Sun D, Lu L, Wang T, Zhang W, Wang J, Li Y, Hu H G, Tian C, Liu L. CCS Chemistry, 2019, 1: 476.

[182]

Bang D, Pentelute B L, Kent S B H. Angew. Chem. Int. Ed., 200, 45: 3985.

[183]

Hojo H, Onuma Y, Akimoto Y, Nakahara Y, Nakahara Y. Tetrahedron Lett., 2007, 48: 25.

[184]

Erlich L A, Kumar K S A, Haj-Yahya M, Dawson P E, Brik A. Org. Biomol. Chem., 2010, 8: 2392.

[185]

Bang D, Kent S B H. Angew. Chem. Int. Ed., 2004, 43: 2534.

[186]

Huang Y C, Chen C C, Gao S, Wang Y H, Xiao H, Wang F, Tian C L, Li Y M. Chem. Eur. J., 201, 22: 7623.

[187]

Veber D, Milkowski J, Varga S, Denkewalter R, Hirschmann R. J. Am. Chem. Soc., 1972, 94: 5456.

[188]

Jbara M, Maity S K, Seenaiah M, Brik A. J. Am. Chem. Soc., 201, 138: 5069.

[189]

Sakamoto I, Tezuka K, Fukae K, Ishii K, Taduru K, Maeda M, Ouchi M, Yoshida K, Nambu Y, Igarashi J, Hayashi N, Tsuji T, Kajihara Y. J. Am. Chem. Soc., 2012, 134: 5428.

[190]

Liu S, Pentelute B L, Kent S B H. Angew. Chem. Int. Ed., 2012, 51: 993.

[191]

Zuo C, Zhang B, Yan B, Zheng J S. Org. Biomol. Chem., 2019, 17: 727.

[192]

Raibaut L, Cargoët M, Ollivier N, Chang Y M, Drobecq H, Boll E, Desmet R, Monbaliu J C M, Melnyk O. Chem. Sci., 201, 7: 2657.

[193]

Aihara K, Yamaoka K, Naruse N, Inokuma T, Shigenaga A, Otaka A. Org. Lett., 201, 18: 596.

[194]

GL Biochem(Shanghai) Ltd. Peptides & Reagents for Peptides Synthesis and Combichem, 2020, http://www.glbiochem.com/image/product/catalogue%202020.pdf

[195]

Thompson R E, Muir T W. Chem. Rev., 2020, 120: 3051.

[196]

Masuda S, Tsuda S, Yoshiya T. Org. Biomol. Chem., 2019, 17: 10228.

[197]

Jacobsen M T, Erickson P W, Kay M S. Bioorg. Med. Chem., 2017, 25: 4946.

[198]

Disotuar M M, Petersen M E, Nogueira J M, Kay M S, Chou D H C. Org. Biomol. Chem., 2019, 17: 1703.

[199]

Zuo C, Tang S, Zheng J S. J. Pept. Sci., 2015, 21: 540.

[200]

Paradis-Bas M, Tulla-Puche J, Albericio F. Chem. Soc. Rev., 201, 45: 631.

[201]

Kochendoerfer G G, Salom D, Lear J D, Wilk-Orescan R, Kent S B H, DeGrado W F. Biochemistry, 1999, 38: 11905.

[202]

Rohrbacher F, Zwicky A, Bode J W. Chem. Sci., 2017, 8: 4051.

[203]

Valiyaveetil F I, MacKinnon R, Muir T W. J. Am. Chem. Soc., 2002, 124: 9113.

[204]

Bianchi E, Ingenito R, Simon R J, Pessi A. J. Am. Chem. Soc., 1999, 121: 7698.

[205]

Harmand T J, Pattabiraman V R, Bode J W. Angew. Chem. Int. Ed., 2017, 56: 12639.

[206]

Sato T, Saito Y, Aimoto S. J. Pept. Sci., 2005, 11: 410.

[207]

Maity S K, Mann G, Jbara M, Laps S, Kamnesky G, Brik A. Org. Lett., 201, 18: 3026.

[208]

Tsuda S, Mochizuki M, Ishiba H, Yoshizawa-Kumagaye K, Nishio H, Oishi S, Yoshiya T. Angew. Chem. Int. Ed., 2018, 57: 2105.

[209]

Tan Z, Shang S, Danishefsky S J. Proc. Natl. Acad. Sci. USA, 2011, 108: 4297.

[210]

Asahina Y, Komiya S, Ohagi A, Fujimoto R, Tamagaki H, Nakagawa K, Sato T, Akira S, Takao T, Ishii A, Nakahara Y, Hojo H. Angew. Chem. Int. Ed., 2015, 54: 8226.

[211]

Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52: 4858.

[212]

Tailhades J, Patil N A, Hossain M A, Wade J D. J. Pept. Sci., 2015, 21: 139.

[213]

Sohma Y., Sasaki M., Hayashi Y., Kimura T., Kiso Y., Chem. Commun., 2004, 124

[214]

Sohma Y, Chiyomori Y, Kimura M, Fukao F, Taniguchi A, Hayashi Y, Kimura T, Kiso Y. Bioorg. Med. Chem., 2005, 13: 6167.

[215]

Liu F, Luo E Y, Flora D B, Mezo A R. Angew. Chem. Int. Ed., 2014, 53: 3983.

[216]

Johnson E C B, Kent S B H. J. Am. Chem. Soc., 200, 128: 7140.

[217]

Hartrampf N, Saebi A, Poskus M, Gates Z P, Callahan A J, Cowfer A E, Hanna S, Antilla S, Schissel C K, Quartararo A J, Ye X, Mijalis A J, Simon M D, Loas A, Liu S, Jessen C, Nielsen T E, Pentelute B L. Science, 2020, 368: 980.

[218]

Kent S B H. Curr. Opin. Chem. Biol., 2018, 46: 1.

[219]

Chang H N, Liu B Y, Qi Y K, Zhou Y, Chen Y P, Pan K M, Li W W, Zhou X M, Ma W W, Fu C Y, Qi Y M, Liu L, Gao Y F. Angew. Chem. Int. Ed., 2015, 54: 11760.

[220]

Schumacher T N M, Mayr L M, Minor D L, Milhollen M A, Burgess M W, Kim P S. Science, 199, 271: 1854.

[221]

Uppalapati M, Lee D J, Mandal K, Li H, Miranda L P, Lowitz J, Kenney J, Adams J J, Ault-Riché D, Kent S B H, Sidhu S S. ACS Chem. Biol., 201, 11: 1058.

[222]

Dang B B, Chhabra S, Pennington M W, Norton R S, Kent S B H. J. Biol. Chem., 2017, 292: 12599.

[223]

Li Z, Zhang B, Zuo C, Liu L. Chin. J. Org. Chem., 2018, 38: 2412.

[224]

Mulder M P C, Witting K F, Ovaa H. Curr. Issues Mol. Biol., 2020, 37: 1.

[225]

Baumann A L, Hackenberger C P R. Chimia, 2018, 72: 802.

[226]

Hu J, Zhu P, Li Y, Chen Y. Chin. Chem. Lett., 2018, 29: 1043.

[227]

Lin J, Li X D. Chin. Chem. Lett., 2018, 29: 1051.

[228]

Bi X, Pasunooti K K, Liu C F. Sci. China Chem., 2018, 61: 251.

[229]

Tam J P, Chan N Y, Liew H T, Tan S J, Chen Y. Sci. China Chem., 2020, 63: 296.

[230]

Si Y, Liang L, Tang S, Qi Y, Huang Y, Liu L. Sci. China Chem., 2018, 61: 412.

[231]

Qi Y K, Si Y Y, Du S S, Liang J, Wang K W, Zheng J S. Sci. China Chem., 2019, 62: 299.

[232]

Wu Y, Ye X S. Acta Chim. Sinica, 2019, 77: 581.

[233]

Zhang Y F, Hirota T, Kuwata K, Oishi S, Gramani S G, Bode J W. J. Am. Chem. Soc., 2019, 141: 14742.

[234]

Xin B T, Gan J, Fernandez D J, Knobeloch K P, Geurink P P, Ovaa H. Org. Biomol. Chem., 2019, 17: 10148.

[235]

Unverzagt C, Kajihara Y. Curr. Opin. Chem. Biol., 2018, 46: 130.

[236]

Jbara M, Sun H, Kamnesky G, Brik A. Curr. Opin. Chem. Biol., 2018, 46: 18.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/