Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability

Chaoxian Chen , Chenyang Zhao , Cuihua Li , Jianhong Liu , Dayong Gui

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 715 -720.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (4) : 715 -720. DOI: 10.1007/s40242-020-0149-4
Article

Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability

Author information +
History +
PDF

Abstract

In this work, NiCo2O4(NCO) was synthesized via microwave hydrothermal method and a further annealing treatment. Research results have shown that the surface defects(Co2+ site) and pore size of the materials can be adjusted by simply changing the calcination temperatures, and porous nanowire arrays structure can be obtained. The porous structure is conducive to the penetration of the electrolyte and enables the NCO to fully participate in the electrochemical reaction. What’s more, the NCO material has ample space to buffer the volume change in the cycle test, improving the cycling stability. The NCO obtained at 350 °C has better performance. It exhibits a specific capacitance of 648.69 F/g at 1 A/g and good rate capability. Especially, at 10 A/g, the specific capacitance can still be maintained at 80.00% after 10000 galvanostatic charge/discharge(GCD) cycles, showing excellent cycling stability.

Keywords

NiCo2O4 / Porous nanowire array / High cycling stability / Supercapacitor

Cite this article

Download citation ▾
Chaoxian Chen, Chenyang Zhao, Cuihua Li, Jianhong Liu, Dayong Gui. Porous NiCo2O4 Nanowire Arrays as Supercapacitor Electrode Materials with Extremely High Cycling Stability. Chemical Research in Chinese Universities, 2020, 36(4): 715-720 DOI:10.1007/s40242-020-0149-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shanmugavani A, Selvan R K. Electrochimica Acta, 201, 189: 283.

[2]

Zheng Y, Tian Y, Liu S, Tan X, Wang S, Guo Q, Luo J, Li Z. Journal of Alloys and Compounds, 2019, 806: 170.

[3]

Conway B E. Journal of Electrochemical Society, 1991, 138: 1539.

[4]

Zhang Y, Yu S, Lou G, Shen Y, Chen H, Shen Z, Zhao S, Zhang J, Chai S, Zou Q. Journal of Materials Science, 2017, 52: 11201.

[5]

Shang P, Zhang J, Tang W, Xu Q, Guo S. Advanced Functional Materials, 201, 26: 7766.

[6]

Li Z, Xu K, Pan Y. Nanotechnology Reviews, 2019, 8: 35.

[7]

Yu G, Xie X, Pan L, Bao Z, Cui Y. Nano Energy, 2013, 2: 213.

[8]

Li W, Xu K, An L, Jiang F, Zhou X, Yang J, Chen Z, Zou R, Hu J. Journal of Materials Chemistry A, 2014, 2: 1443.

[9]

Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y. Nano Letter, 2012, 12: 1690.

[10]

Vijayakumar S, Nagamuthu S, Muralidharan G. Applied Materials & Interfaces, 2013, 5: 2188.

[11]

Li Y, Han X, Yi T, He Y, Li X. Journal of Energy Chemistry, 2019, 31: 54.

[12]

Dubal D P, Gomez-Romero P, Sankapal B R, Holze R. Nano Energy, 2014, 11: 377.

[13]

Yang F, Zhang K, Li W, Xu K. Journal of Colloid and Interface Science, 2019, 556: 386.

[14]

Deng X, Fan Y, Zhou Q, Huang H, Zhou W, Lan Z, Liang X, Li G, Guo J, Tang S. Electrochimica Acta, 2019, 319: 783.

[15]

Yuan C, Li J, Hou L, Zhang X, Shen L, Lou X W. Advanced Functional Materials, 2012, 22: 4592.

[16]

Rakhi R B, Chen W, Cha D, Alshareef H N. Nano Letter, 2012, 12: 2559.

[17]

Zhao H, Liu L, Vellacheri R, Lei Y. Advanced Science, 2017, 4: 1700188.

[18]

Liu C, Jiang W, Hu F, Wu X, Xue D. Inorganic Chemistry Frontiers, 2018, 5: 835.

[19]

Zhang Y, Wang X, Shen M, Fu X, Huang M, Liu X, Zhang Y X. Journal of Materials Science, 2019, 54: 4821.

[20]

Sethi M, Bhat D K. Journal of Alloys and Compounds, 2019, 781: 1013.

[21]

Zhang H, Xiao D, Li Q, Ma Y, Yuan S, Xie L, Chen C, Lu C. Journal of Energy Chemistry, 2017, 27: 195.

[22]

Xiao T, Li J, Zhuang X, Zhang W, Wang S, Chen X, Xiang P, Jiang L, Tan X. Electrochimica Acta, 2018, 269: 397.

[23]

Guan C, Liu X, Ren W, Li X, Cheng C, Wang J. Advanced Energy Materials, 2017, 7: 1602391.

[24]

Fu H Y, Wang Z Y, Li Y H, Zhang Y F. Materials Research Innovations, 2015, 19: S255.

[25]

Cheng G, Kou T, Zhang J, Si C, Gao H, Zhang Z. Nano Energy, 2017, 38: 155.

[26]

Cui B, Lin H, Liu Y, Li J, Sun P, Zhao X, Liu C. Journal Physical Chemistry C, 2009, 113: 14083.

[27]

Guo D, Zhang L, Song X, Tan L, Ma H, Jiao J, Zhu D, Li F. New Journal of Chemistry, 2018, 42: 8478.

[28]

Yan D, Wang W, Luo X, Chen C, Zeng Y, Zhu Z. Chemical Engineering Journal, 2018, 334: 864.

[29]

Shen L, Che Q, Li H, Zhang X. Advanced Functional Materials, 2014, 24: 2630.

[30]

Gao S, Liao F, Ma S, Zhu L, Shao M. Journal of Materials Chemistry A, 2015, 3: 16520.

[31]

Zhao L, Wang L, Yu P, Tian C, Feng H, Diao Z, Fu H. Dalton Transactions, 2017, 46: 4717.

[32]

Largeot C, Portet C, Chmiola J, Taberna P L, Gogotsi Y, Simon P. Journal of American Chemical Society, 2008, 130: 2730.

[33]

Naresh B, Krishna T N V, Rao S S, Kim H J. Materials Letters, 2019, 248: 218.

[34]

Jabeen N, Xia Q, Yang M, Xia H. ACS Applied Materials & Interfaces, 201, 8: 6093.

[35]

Ai Y, Ma J, Wang Z M. Earth and Environmental Science, 2018, 170: 032095.

[36]

Yedluri A K, Kim H. RSC Advances, 2019, 9: 1115.

[37]

Deng F, Yu L, Cheng G, Lin T, Sun M, Ye F, Li Y. Journal of Power Sources, 2014, 251: 202.

[38]

Waghmode R B, Torane A P. Journal of Materials Science: Materials in Electronics, 201, 27: 6133.

[39]

Zhang Y, Ma M, Yang J, Su H, Huang W, Dong X. Nanoscale, 2014, 6: 4303.

[40]

Wang H, Wang X, Yang J. ACS Applied Materials & Interfaces, 2013, 5: 6255.

[41]

Xu J, Liu F, Peng X, Li J, Yang Y, Jin D. Chemistryselect, 2017, 2: 5189.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/