An Intuitive Electric-field Contribution Decomposition Model for Chemical Processes and Its Applications on Diels-Alder Reactions

Fengyi Liu , Minjuan Liu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1241 -1248.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (6) : 1241 -1248. DOI: 10.1007/s40242-020-0143-x
Article

An Intuitive Electric-field Contribution Decomposition Model for Chemical Processes and Its Applications on Diels-Alder Reactions

Author information +
History +
PDF

Abstract

External electric field(EEF) has shown its advantages in tuning chemical reaction as an efficient and feasible-to-control tool. In this paper, we explored the mechanisms of three EEF-regulated Diels-Alder reactions including two traditional-DA reactions to form two C—C single bonds and a hetero-DA reaction to form both a C—C and a C—O bond, respectively, and introduced an EEF contribution decomposition(ECD) model to understand how the EEF coupled with the intrinsic nuclear and electronic redistributions so as to affect chemical reaction. The ECD model, by decomposing the overall EEF effects into geometry re-equilibrium and static induction parts, can give a clear and quantitative picture of a physical quantity change upon EEF, as demonstrated on relative energies, activation barriers, charge distribution and dipole moments. The ECD analyses will shed light on the effective tuning of chemical reactions by the electric field.

Keywords

Electric field / Diels-Alder reaction / Decomposition model

Cite this article

Download citation ▾
Fengyi Liu, Minjuan Liu. An Intuitive Electric-field Contribution Decomposition Model for Chemical Processes and Its Applications on Diels-Alder Reactions. Chemical Research in Chinese Universities, 2020, 36(6): 1241-1248 DOI:10.1007/s40242-020-0143-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Diels O, Alder K. Liebigs Ann. Chem., 1928, 460: 98.

[2]

Diels O, Blom J H, Koll W. Liebigs Ann. Chem., 1925, 443: 242.

[3]

Sauer J, Sustmann R. Angew. Chem. Int. Ed., 1980, 19: 779.

[4]

Konovalov A I. Russ. Chem. Rev., 1983, 52: 1064.

[5]

Xu L, Liu F, Xu L W, Gao Z, Zhao Y M. Org. Lett., 201, 18: 3698.

[6]

Heravi M M, Ahmadi T, Ghavidel M, Heidari B, Hamidi H. RSC Adv., 2015, 5: 101999.

[7]

Schmidt R R. Acc. Chem. Res., 198, 19: 250.

[8]

Cui H L, Tanaka F. Chem. Eur. J., 2013, 19: 6213.

[9]

Meir R, Chen H, Lai W, Shaik S. ChemPhysChem, 2010, 11: 301.

[10]

Shaik S, Mandal D, Ramanan R. Nat. Chem., 201, 8: 1091.

[11]

Aragonès A C, Haworth N L, Darwish N, Ciampi S, Bloomfield N J, Wallace G G, Diez-Perez I, Coote M L. Nature, 201, 531: 88.

[12]

Shaik S, Ramanan R, Danovich D, Mandal D. Chem. Soc. Rev., 2018, 47: 5125.

[13]

Aitken H M, Coote M L. Phys. Chem. Chem. Phys., 2018, 20: 10671.

[14]

Li Y, Li Y, Su Q, Wang B, Guo N, Liu F. Theor. Chem. Acc., 2017, 136: 27.

[15]

Schyman P, Lai W, Chen H, Wang Y, Shaik S. J. Am. Chem. Soc., 2011, 133: 7977.

[16]

Bhattacharyya K, Karmakar S, Datta A. Phys. Chem. Chem. Phys., 2017, 19: 22482.

[17]

Geng C, Li J, Weiske T, Schlangen M, Shaik S, Schwarz H. J. Am. Chem. Soc., 2017, 139: 1684.

[18]

Gorin C F, Beh E S, Bui Q M, Dick G R, Kanan M W. J. Am. Chem. Soc., 2013, 135: 11257.

[19]

Akamatsu M, Sakai N, Matile S. J. Am. Chem. Soc., 2017, 139: 6558.

[20]

Ess D H, Houk K N. J. Am. Chem. Soc., 2007, 129: 10646.

[21]

Yang Y F, Liang Y, Liu F, Houk K N. J. Am. Chem. Soc., 201, 138: 1660.

[22]

Bickrthlhaupt F M, Houk K N. Angew. Chem. Int. Ed., 2017, 56: 10070.

[23]

Cohen A J, Mori-Sánchez P, Yang W. Chem. Rev., 2012, 112: 289.

[24]

Zhao Y, Truhlar D G. Acc. Chem. Res., 2008, 41: 157.

[25]

Zhao Y, Truhlar D G. Theor. Chem. Acc., 2008, 120: 215.

[26]

Grimme S. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1: 211.

[27]

Krishnan R, Binkley J S, Seeger R, Pople J A. J. Chem. Phys., 1980, 72: 650.

[28]

Badger R M, Bauer S H. J. Chem. Phys., 1937, 5: 839.

[29]

Wong M W. Chem. Phys. Lett., 199, 256: 391.

[30]

Fukui K. Acc. Chem. Res., 1981, 14: 363.

[31]

Tomasi J, Mennucci B, Cammi R. Chem. Rev., 2005, 105: 2999.

[32]

Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr., Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 09, Revision A.02, 2016, Wallingford, CT: Gaussian, Inc.

[33]

Sakata K, Fujimoto H. Eur. J. Org. Chem., 201, 2016: 4275.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/