Electrochemical Impedance Analysis of Thermogalvanic Cells

Peihua Yang , Hongjin Fan

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 420 -424.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 420 -424. DOI: 10.1007/s40242-020-0126-y
Communication

Electrochemical Impedance Analysis of Thermogalvanic Cells

Author information +
History +
PDF

Abstract

Thermogalvanic cells(also known as thermo-electrochemical cells) that convert waste heat energy to electricity are a new type of energy conversion device. However, the electron transfer kinetics and mass transfer of redox couples have not been thoroughly studied. Here, the ion reaction and charge transport in thermogalvanic cells are investigated by electrochemical impedance analysis. We first propose the detailed impedance model followed experimental verification on three types of electrode materials. Parameters including kinetic rate constants and ion diffusion coefficients for the electrodes are obtained by fitting the impedance data. Our study shows explicitly that impedance analysis can provide useful information on selecting suitable electrode materials for thermogalvanic cells.

Keywords

Thermogalvanic cell / Electrochemical impedance spectroscopy / Kinetic rate constant / Charge transfer / Ion diffusion coefficient

Cite this article

Download citation ▾
Peihua Yang, Hongjin Fan. Electrochemical Impedance Analysis of Thermogalvanic Cells. Chemical Research in Chinese Universities, 2020, 36(3): 420-424 DOI:10.1007/s40242-020-0126-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang P, Liu K, Chen Q, Mo X, Zhou Y, Li S, Feng G, Zhou J. Angew. Chem., Int. Ed, 201, 55: 12050.

[2]

Yu B, Duan J, Li J, Xie W, Jin H, Liu R, Wang H, Huang L, Hu B, Zhou J. Research, 2019, 2019: 2460953.

[3]

Duan J, Yu B, Liu K, Li J, Yang P, Xie W, Xue G, Liu R, Wang H, Zhou J. Nano Energy, 2019, 57: 473.

[4]

Ma H, Wang X, Peng Y, Peng H, Hu M, Xiao L, Wang G, Lu J, Zhuang L. ACS Energy Lett., 2019, 4: 1810.

[5]

Kim K, Hwang S, Lee H. Electrochim. Acta, 2020, 335: 135651.

[6]

Dupont M F, MacFarlane D R, Pringle J M. Chem. Commun., 2017, 53: 6288.

[7]

Artyukhov D, Kiselev N, Gorshkov N, Burmistrov I. Procedia Environ. Sci., Eng. Manage., 2019, 6: 319.

[8]

Duan J, Feng G, Yu B, Li J, Chen M, Yang P, Feng J, Liu K, Zhou J. Nat. Commun., 2018, 9: 5146.

[9]

Alzahrani H A H, Buckingham M A, Marken F, Aldous L. Electrochem. Commun., 2019, 102: 41.

[10]

Pu S., Liao Y., Chen K., Fu J., Zhang S., Ge L., Conta G., Bouzarif S., Cheng T., Hu X., Liu K., Chen J., Nano Lett., 2020, https://doi.org/10.1021/acs.nanolett.0c00800

[11]

Zhang L, Kim T, Li N, Kang T J, Chen J, Pringle J M, Zhang M, Kazim A H, Fang S, Haines C, Al-Masri D, Cola B A, Razal J M, Di J, Beirne S, MacFarlane D R, Gonzalez-Martin A, Mathew S, Kim Y H, Wallace G, Baughman R H. Adv. Mater., 2017, 29: 1605652.

[12]

Im H, Kim T, Song H, Choi J, Park J S, Ovalle-Robles R, Yang H D, Kihm K D, Baughman R H, Lee H H, Kang T J, Kim Y H. Nat. Commun., 201, 7: 10600.

[13]

Wijeratne K, Vagin M, Brooke R, Crispin X. J. Mater. Chem. A, 2017, 5: 19619.

[14]

Wijeratne K. Conducting Polymer Electrodes for Thermogalvanic Cells, Vol. 1971, 2019, Linköping: Linköping University Electronic Press

[15]

Vojnović M V, Sepa D B. J. Chem. Phys., 1969, 51: 5344.

[16]

Abraham T J, Tachikawa N, MacFarlane D R, Pringle J M. Phys. Chem. Chem. Phys., 2014, 16: 2527.

[17]

Chang B Y, Park S M. Annu. Rev. Anal. Chem., 2010, 3: 207.

[18]

Vicente N, Haro M, Garcia-Belmonte G. Chem. Commun., 2018, 54: 1025.

[19]

Taberna P L, Simon P, Fauvarque J F. J. Electrochem. Soc., 2003, 150: A292.

[20]

Yuan X, Wang H, Sun J C, Zhang J. Int. J. Hydrogen Energy, 2007, 32: 4365.

[21]

Zhang L, Zhan X, Cheng Y T, Shirpour M. J. Phys. Chem. Lett., 2017, 8: 5385.

[22]

Lvovich V F. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena, 2012, New Jersey: John Wiley & Sons. Chapter 5

[23]

Hirschorn B, Orazem M E, Tribollet B, Vivier V, Frateur I, Musiani M. Electrochim. Acta, 2010, 55: 6218.

[24]

Fleig J. Solid State Ionics, 2002, 150: 181.

[25]

Warburg E. Ann. Phys., 1899, 303: 493.

[26]

Huang J. Electrochim. Acta, 2018, 281: 170.

[27]

Macdonald J R, Barsoukov E. Impedance Spectroscopy: Theory, Experiment, and Applications, 2005, New Jersey: John Wiley Sons Chapter 2

[28]

Konopka S J, McDuffie B. Anal. Chem., 1970, 42: 1741.

[29]

Lasia A. Electrochemical Impedance Spectroscopy and Its Applications, 2014, New York: Springer. Chapter 4

[30]

http://zahner.de/support/thales-manual.html

[31]

Kim D Y, Wang J, Yang J, Kim H W, Swain G M. J. Phys. Chem. C, 2011, 115: 10026.

[32]

Xiao X, Li T, Peng Z, Jin H, Zhong Q, Hu Q, Yao B, Luo Q, Zhang C, Gong L, Chen J, Gogotsi Y, Zhou J. Nano Energy, 2014, 6: 1.

[33]

Yang P, Chen Y, Yu X, Qiang P, Wang K, Cai X, Tan S, Liu P, Song J, Mai W. Nano Energy, 2014, 10: 108.

[34]

Yang P, Qu X, Liu K, Duan J, Li J, Chen Q, Xue G, Xie W, Xu Z, Zhou J. ACS Appl. Mater. Interfaces, 2018, 10: 8010.

[35]

Kang T J, Fang S, Kozlov M E, Haines C S, Li N, Kim Y H, Chen Y, Baughman R H. Adv. Funct. Mater., 2012, 22: 477.

[36]

Romano M S, Li N, Antiohos D, Razal J M, Nattestad A, Beirne S, Fang S, Chen Y, Jalili R, Wallace G G, Baughman R, Chen J. Adv. Mater., 2013, 25: 6602.

[37]

Hu R, Cola B A, Haram N, Barisci J N, Lee S, Stoughton S, Wallace G, Too C, Thomas M, Gestos A, Cruz M E d, Ferraris J P, Zakhidov A A, Baughman R H. Nano Lett., 2010, 10: 838.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/