Bimetallic Sulfide/Sulfur Doped T3C2T x MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries

Rui Zang , Peng Li , Guoxiu Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 431 -438.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 431 -438. DOI: 10.1007/s40242-020-0120-4
Article

Bimetallic Sulfide/Sulfur Doped T3C2T x MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries

Author information +
History +
PDF

Abstract

The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of Co xFe1−xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(Co xFe1−xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, Co xFe1−xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 m·Ah/g at 5 A/g with an 94% capacity retention after 600 cycles).

Keywords

Bimetallic sulfide / Ti3C2 MXene / Sulfur doping / Anode material / Sodium-ion battery

Cite this article

Download citation ▾
Rui Zang, Peng Li, Guoxiu Wang. Bimetallic Sulfide/Sulfur Doped T3C2T x MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries. Chemical Research in Chinese Universities, 2020, 36(3): 431-438 DOI:10.1007/s40242-020-0120-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.

[2]

Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruna H D, Simon P, Dunn B. Nat. Mater., 2013, 12: 518.

[3]

Myung S T, Lee K S, Sun Y K, Yashiro H. J. Power Sources, 2011, 196: 7039.

[4]

Slater M D, Kim D, Lee E, Johnson C S. Adv. Funct. Mater., 2013, 23: 947.

[5]

Cui J, Yao S S, Kim J K. Energy Storage Mater., 2017, 7: 64.

[6]

Liu J, Wen Y, Wang Y, van Aken P A, Maier J, Yu Y. Adv. Mater., 2014, 26: 6025.

[7]

Fang C, Huang Y H, Zhang W X, Han J T, Deng Z, Cao Y L, Yang H X. Adv. Energy Mater., 201, 6: 18.

[8]

Li Y M, Lu Y X, Zhao C L, Hu Y S, Titirici M M, Li H, Huang X J, Chen L Q. Energy Storage Mater., 2017, 7: 130.

[9]

Chen Y Y, Hu X D, Evanko B, Sun X H, Li X, Hou TY, Cai S, Zheng C M, Hu W B, Stucky G D. Nano Energy, 2018, 46: 117.

[10]

David L, Bhandavat R, Singh G. ACS Nano, 2014, 8: 1759.

[11]

Wang T Y, Chen S Q, Pang H, Xue H G, Yu Y. Adv. Sci., 2017, 4: 1600289.

[12]

Teng Y Q, Zhao H L, Zhang Z J, Zhao L N, Zhang Y, Li Z L, Xia Q, Du Z H, Swierczek K. Carbon, 2017, 119: 91.

[13]

Chen J E, Fan M S, Chen Y L, Deng Y H, Kim J H, Alamri H R, Alothman Z A, Yamauchi Y, Ho K C, Wu K C W. Chem. Eur. J., 2017, 23: 13284.

[14]

Zhu Y J, Suo L M, Gao T, Fan X L, Han F D, Wang C S. Electrochem. Commun., 2015, 54: 18.

[15]

Zhang S S, Tran D T. J. Electrochem. Soc., 201, 163: A792.

[16]

Chen K Y, Zhang W X, Xue L H, Chen W L, Xiang X H, Wan M, Huang Y H. ACS Appl. Mater. Interfaces, 2017, 9: 1536.

[17]

Liu Z M, Lu T C, Song T, Yu X Y, Lou X W, Paik U. Energy Environ. Sci., 2017, 10: 1576.

[18]

Zhang K, Park M, Zhou L M, Lee G H, Shin J, Hu Z, Chou S L, Chen J, Kang Y M. Angew. Chem.-Int. Ed., 201, 55: 12822.

[19]

Yan J, Ren C E, Maleski K, Hatter C B, Anasori B, Urbankowski P, Sarycheva A, Gogotsi Y. Adv. Funct. Mater., 2017, 27: 1701264.

[20]

Du Y T, Kan X, Yang F, Gan L Y, Schwingenschlogl U. ACS Appl. Mater. Interfaces, 2018, 10: 32867.

[21]

Xiong D B, Li X F, Bai Z M, Lu S G. Small, 2018, 14: 1703419.

[22]

Huang K, Li Z J, Lin J, Han G, Huang P. Chem. Soc. Rev., 2018, 47: 6889.

[23]

Huang H W, Cui J, Liu G X, Bi R, Zhang L. ACS Nano, 2019, 13: 3448.

[24]

Guo X, Zhang J Q, Song J J, Wu W J, Liu H, Wang G X. Energy Storage Mater., 2018, 14: 306.

[25]

Zhao D Y, Zhao R Z, Dong S H, Miao X G, Zhang Z W, Wang C X, Yin L W. Energy Environ. Sci., 2019, 12: 2422.

[26]

Luo J M, Zheng J H, Nai J W, Jin C B, Yuan H D, Sheng O W, Liu Y J, Fang R Y, Zhang W K, Huang H. Adv. Fun. Mater., 2019, 29: 1808107.

[27]

Bao W Z, Shuck C E, Zhang W X, Guo X, Gogotsi Y, Wang G X. ACS Nano, 2019, 13: 11500.

[28]

Ge P, Hou H S, Li S J, Yang L, Ji X B. Adv. Funct. Mater., 2018, 28: 1801765.

[29]

Zhao W X, Guo C X, Li CM. J. Mater. Chem. A, 2017, 5: 19195.

[30]

Shao M, Cheng Y Y, Zhang T, Li S, Zhang W N, Zheng B, Wu J S, Xiong W W, Huo F W, Lu J. ACS Appl. Mater. Interfaces, 2018, 10: 33097.

[31]

Zhang Y Q, Tao H C, Du S L, Yang X L. ACS Appl. Mater. Interfaces, 2019, 11: 11327.

[32]

Wang T S, Hu P, Zhang C J, Du H P, Zhang Z H, Wang X G, Chen S G, Xiong J W, Cui G L. ACS Appl. Mater. Interfaces, 201, 8: 7811.

[33]

Jiang Y L, Zou G Q, Hong W W, Zhang Y, Zhang Y, Shuai H L, Xu W, Hou H S, Ji X B. Nanoscale, 2018, 10: 18786.

[34]

Zhang Y H, Wang N N, Sun C H, Lu Z X, Xue P, Tang B, Bai Z C, Dou S X. Chem. Eng. J., 2018, 332: 370.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/