Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries

Sijie Guo , Yonggang Sun , Anmin Cao

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 329 -342.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 329 -342. DOI: 10.1007/s40242-020-0116-0
Review

Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries

Author information +
History +
PDF

Abstract

The continuous development of solid-state electrolytes(SSEs) has stimulated immense progress in the development of all-solid-state batteries(ASSBs). Particularly, garnet-typed SSEs in formula of Li7La3Zr2O12(LLZO) are fctivity(<1 mS/cm), wide electrochemical window(<5 V), and good chemical electrochemical stability for lithium, which are critical factors to ensure a stable, and high performance ASSBs. This review will focus on the challenges related to LLZOs-based electrolyte, and update the recent developments in structural design of LLZOs, which are discussed in three major sections: (i) crystal structure and the lithium-ion transport mechanism of LLZO; (ii) single-site and multi-site doping of Li sites, La sites and Zr sites to enhance Li ions conductivity(LIC) and stability of LLZO; (iii) interface strategies between electrodes and LLZO to decrease interface area-specific resistance(ASR).

Keywords

Solid-state electrolyte / Garnet / Li ions conductivity / Doping / Surface coating

Cite this article

Download citation ▾
Sijie Guo, Yonggang Sun, Anmin Cao. Garnet-type Solid-state Electrolyte Li7La3Zr2O12: Crystal Structure, Element Doping and Interface Strategies for Solid-state Lithium Batteries. Chemical Research in Chinese Universities, 2020, 36(3): 329-342 DOI:10.1007/s40242-020-0116-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tan D H S, Banerjee A, Chen Z, Meng Y S. Nat. Nanotechnol., 2020, 15: 170.

[2]

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W. Joule, 2019, 3: 1190.

[3]

Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G. Nature Reviews Materials, 2020, 5: 105.

[4]

Janek J, Zeier W G. Nature Energy, 201, 1: 16141.

[5]

Li T, Liu H, Shi P, Zhang Q. Rare Metals, 2018, 37: 449.

[6]

Park K H, Bai Q, Kim D H, Oh D Y, Zhu Y, Mo Y, Jung Y S. Advanced Energy Materials, 2018, 8: 1800035.

[7]

Luo W., Yu C., Hu L., Encyclopedia of Inorganic and Bioinorganic Chemistry, R.A. Scott (Ed.). doi:https://doi.org/10.1002/9781119951438.eibc2666

[8]

Fan L, Wei S, Li S, Li Q, Lu Y. Advanced Energy Materials, 2018, 8: 1702657.

[9]

Yu H J, Yu Y, Yang S B. Rare Metals, 2018, 37: 447.

[10]

Manthiram A., Yu X., Wang S., Nature Reviews Materials, 2017, 2

[11]

Murugan R, Thangadurai V, Weppner W. Angew Chem. Int. Ed. Engl., 2007, 46: 7778.

[12]

Zhang Y, Chen F, Tu R, Shen Q, Zhang L. Journal of Power Sources, 2014, 268: 960.

[13]

Cheng L, Wu C H, Jarry A, Chen W, Ye Y, Zhu J, Kostecki R, Persson K, Guo J, Salmeron M, Chen G, Doeff M. ACS Appl. Mater. Interfaces, 2015, 7: 17649.

[14]

Aguesse F, Manalastas W, Buannic L, Lopez Del Amo J M, Singh G, Llordes A, Kilner J. ACS Appl. Mater. Interfaces, 2017, 9: 3808.

[15]

Hitz G T, Wachsman E D, Thangadurai V. Journal of The Electrochemical Society, 2013, 160: A1248.

[16]

Huang M, Dumon A, Nan C W. Electrochemistry Communications, 2012, 21: 62.

[17]

Lu X, Yang D. Journal of Inorganic, Organometallic Polymers, Materials, 2018, 28: 2023.

[18]

Stanje B, Rettenwander D, Breuer S, Uitz M, Berendts S, Lerch M, Uecker R, Redhammer G, Hanzu I, Wilkening M. Annalen der Physik, 2017, 529: 170140.

[19]

Awaka J, Kijima N, Hayakawa H, Akimoto J. Journal of Solid State Chemistry, 2009, 182: 2046.

[20]

Cao S, Song S, Xiang X, Hu Q, Zhang C, Xia Z, Xu Y, Zha W, Li J, Gonzale P M, Han Y H, Chen F. Journal of the Korean Ceramic Society, 2019, 56: 111.

[21]

Zhang Y, Chen F, Tu R, Shen Q, Zhang X, Zhang L. Solid State Ionics, 201, 284: 53.

[22]

Wang D, Zhong G, Pang W K, Guo Z, Li Y, McDonald M J, Fu R, Mi J X, Yang Y. Chemistry of Materials, 2015, 27: 6650.

[23]

Thangadurai V, Pinzaru D, Narayanan S, Baral A K. J. Phys. Chem. Lett., 2015, 6: 292.

[24]

Wu J F, Chen E Y, Yu Y, Liu L, Wu Y, Pang W K, Peterson V K, Guo X. ACS Appl Mater Interfaces, 2017, 9: 1542.

[25]

Dumon A, Huang M, Shen Y, Nan C W. Solid State Ionics, 2013, 243: 36.

[26]

Dai J, Yang C, Wang C, Pastel G, Hu L. Adv. Mater., 2018, 30: e1802068.

[27]

Jin Y, McGinn P J. Journal of Power Sources, 2011, 196: 8683.

[28]

Kotobuki M, Kanamura K, Sato Y, Yoshida T. Journal of Power Sources, 2011, 196: 7750.

[29]

Rangasamy E, Wolfenstine J, Sakamoto J. Solid State Ionics, 2012, 206: 28.

[30]

Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S. The Journal of Physical Chemistry C, 2017, 121: 15565.

[31]

El-Shinawi H, Paterson G W, MacLaren D A, Cussen E J, Corr S A. Journal of Materials Chemistry A, 2017, 5: 319.

[32]

Padarti J K, Jupalli T T, Hirayama C, Senna M, Kawaguchi T, Sakamoto N, Wakiya N, Suzuki H. Journal of the Taiwan Institute of Chemical Engineers, 2018, 90: 85.

[33]

Pan X X, Wang J X, Chang X H, Li Y D, Guan W B. Solid State Ionics, 2018, 317: 1.

[34]

Xue W, Yang Y, Yang Q, Liu Y, Wang L, Chen C, Cheng R. RSC Advances, 2018, 8: 13083.

[35]

Zhao P, Cao G, Jin Z, Ming H, Wen Y, Xu Y, Zhu X, Xiang Y, Zhang S. Materials & Design, 2018, 139: 65.

[36]

Wolfenstine J, Ratchford J, Rangasamy E, Sakamoto J, Allen J L. Materials Chemistry, Physics, 2012, 134: 571.

[37]

Li C, Liu Y, He J, Brinkman K S. Journal of Alloys, Compounds, 2017, 695: 3744.

[38]

Yang S H, Kim M Y, Kim D H, Jung H Y, Ryu H M, Han J H, Lee M S, Kim H S. Journal of Industrial, Engineering Chemistry, 2017, 56: 422.

[39]

Qin S, Zhu X, Jiang Y, Ling M E, Hu Z, Zhu J. Applied Physics Letters, 2018, 112: 113901.

[40]

Qin S, Zhu X, Jiang Y, Ling M E, Hu Z, Zhu J. Functional Materials Letters, 2018, 11: 1850029.

[41]

Rettenwander D, Redhammer G, Preishuber-Pflugl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff M M, Wilkening M, Fleig J, Amthauer G. Chem. Mater, 201, 28: 2384.

[42]

Rangasamy E, Wolfenstine J, Allen J, Sakamoto J. Journal of Power Sources, 2013, 230: 261.

[43]

Huang M, Xu W, Shen Y, Lin Y H, Nan C W. Electrochimica Acta, 2014, 115: 581.

[44]

Murugan R, Ramakumar S, Janani N. Electrochemistry Communications, 2011, 13: 1373.

[45]

Ramakumar S, Satyanarayana L, Manorama S V, Murugan R. Phys. Chem. Chem. Phys., 2013, 15: 11327.

[46]

Li Y, Wang Z, Cao Y, Du F, Chen C, Cui Z, Guo X. Electrochimica Acta, 2015, 180: 37.

[47]

Liu X, Li Y, Yang T, Cao Z, He W, Gao Y, Liu J, Li G, Li Z. Journal of the American Ceramic Society, 2017, 100: 1527.

[48]

Shao C, Yu Z, Liu H, Zheng Z, Sun N, Diao C. Electrochimica Acta, 2017, 225: 345.

[49]

Jiang Y, Zhu X, Qin S, Ling M E, Zhu J. Solid State Ionics, 2017, 300: 73.

[50]

Song S, Chen B, Ruan Y, Sun J, Yu L, Wang Y, Thokchom J. Electrochimica Acta, 2018, 270: 501.

[51]

Song S, Yan B, Zheng F, Duong H M, Lu L. Solid State Ionics, 2014, 268: 135.

[52]

Ohta S, Kobayashi T, Asaoka T. Journal of Power Sources, 2011, 196: 3342.

[53]

Tang Y, Luo Z, Liu T, Liu P, Li Z, Lu A. Ceramics International, 2017, 43: 11879.

[54]

Kataoka K, Nagata H, Akimoto J. Sci. Rep., 2018, 8: 9965.

[55]

Deviannapoorani C, Dhivya L, Ramakumar S, Murugan R. Journal of Power Sources, 2013, 240: 18.

[56]

Buschmann H, Berendts S, Mogwitz B, Janek J. Journal of Power Sources, 2012, 206: 236.

[57]

Allen J L, Wolfenstine J, Rangasamy E, Sakamoto J. Journal of Power Sources, 2012, 206: 315.

[58]

Hayamizu K, Matsuda Y, Matsui M, Imanishi N. Solid State Nucl. Magn. Reson., 2015, 70: 21.

[59]

Janani N, Ramakumar S, Kannan S, Murugan R, Dunn B. Journal of the American Ceramic Society, 2015, 98: 2039.

[60]

Sun J, Zhao N, Li Y, Guo X, Feng X, Liu X, Liu Z, Cui G, Zheng H, Gu L, Li H. Sci. Rep., 2017, 7: 41217.

[61]

Tsai C L, Roddatis V, Chandran C V, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O. ACS Appl. Mater. Interfaces, 201, 8: 10617.

[62]

Jonson R A, McGinn P J. Solid State Ionics, 2018, 323: 49.

[63]

Kumazaki S, Iriyama Y, Kim K H, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z. Electrochemistry Communications, 2011, 13: 509.

[64]

Ren Y, Deng H, Chen R, Shen Y, Lin Y, Nan C W. Journal of the European Ceramic Society, 2015, 35: 561.

[65]

Shin D O, Oh K, Kim K M, Park K Y, Lee B, Lee Y G, Kang K. Sci. Rep., 2015, 5: 18053.

[66]

Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y, Wachsman E D, Hu L. J. Am. Chem. Soc., 201, 138: 12258.

[67]

Buannic L, Orayech B, López Del Amo J M, Carrasco J, Katcho N A, Aguesse F, Manalastas W, Zhang W, Kilner J, Llordés A. Chemistry of Materials, 2017, 29: 1769.

[68]

El-Shinawi H, Cussen E J, Corr S A. Dalton Trans., 2017, 46: 9415.

[69]

Wu J F, Pang W K, Peterson V K, Wei L, Guo X. ACS Appl Mater Interfaces, 2017, 9: 12461.

[70]

Chen X, Cao T, Xue M, Lv H, Li B, Zhang C. Solid State Ionics, 2018, 314: 92.

[71]

Chen X, Wang T, Lu W, Cao T, Xue M, Li B, Zhang C. Journal of Alloys, Compounds, 2018, 744: 386.

[72]

Hofstetter K, Samson A J, Thangadurai V. Solid State Ionics, 2018, 318: 71.

[73]

Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G. Ceramics International, 2018, 44: 1538.

[74]

Yang X, Kong D, Chen Z, Sun Y, Liu Y. Journal of Materials Science: Materials in Electronics, 2017, 29: 1523.

[75]

Geiger C A, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W. Inorg. Chem., 2011, 50: 1089.

[76]

Düvel A, Kuhn A, Robben L, Wilkening M, Heitjans P. The Journal of Physical Chemistry C, 2012, 116: 15192.

[77]

Jalem R, Rushton M J D, Manalastas W, Nakayama M, Kasuga T, Kilner J A, Grimes R W. Chemistry of Materials, 2015, 27: 2821.

[78]

Hu S, Li Y F, Yang R, Yang Z, Wang L. Ceramics International, 2018, 44: 6614.

[79]

Rettenwander D, Geiger C A, Amthauer G. Inorg Chem, 2013, 52: 8005.

[80]

Rettenwander D, Geiger C A, Tribus M, Tropper P, Wagner R, Tippelt G, Lottermoser W, Amthauer G. J. Solid. State Chem., 2015, 230: 266.

[81]

Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff M M, Limbeck A, Wilkening M, Amthauer G. J. Phys. Chem. C Nanomater Interfaces, 2018, 122: 3780.

[82]

Wolfenstine J, Sakamoto J, Allen J L. Journal of Materials Science, 2012, 47: 4428.

[83]

Wang M, Sakamoto J. Journal of Power Sources, 2018, 377: 7.

[84]

Rawlence M, Filippin A N, Wackerlin A, Lin T Y, Cuervo-Reyes E, Remhof A, Battaglia C, Rupp J L M, Buecheler S. ACS Appl. Mater. Interfaces, 2018, 10: 13720.

[85]

Thangadurai V, Narayanan S, Pinzaru D. Chem. Soc. Rev., 2014, 43: 4714.

[86]

Yan B, Kotobuki M, Liu J. Materials Technology, 201, 31: 623.

[87]

Zhang Y, Chen F, Li J, Zhang L, Gu J, Zhang D, Saito K, Guo Q, Luo P, Dong S. Electrochimica Acta, 2018, 261: 137.

[88]

Ren Y, Liu T, Shen Y, Lin Y, Nan C W. Ionics, 2017, 23: 2521.

[89]

Yu S, Schmidt R D, Garcia-Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J. Chemistry of Materials, 2015, 28: 197.

[90]

Meesala Y, Liao Y K, Jena A, Yang N H, Pang W K, Hu S F, Chang H, Liu C E, Liao S C, Chen J M, Guo X, Liu R S. Journal of Materials Chemistry A, 2019, 7: 8589.

[91]

Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X. Energy & Environmental Science, 2020, 13: 127.

[92]

Alexander G V, Rosero-Navarro N C, Miura A, Tadanaga K, Murugan R. Journal of Materials Chemistry A, 2018, 6: 21018.

[93]

Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G, Mo Y, Thangadurai V, Wachsman E D, Hu L. Nat Mater, 2017, 16: 572.

[94]

Yang C, Xie H, Ping W, Fu K, Liu B, Rao J, Dai J, Wang C, Pastel G, Hu L. Adv Mater, 2019, 31: e1804815.

[95]

Duan J, Wu W, Nolan A M, Wang T, Wen J, Hu C, Mo Y, Luo W, Huang Y. Adv Mater, 2019, 31: e1807243.

[96]

Fu K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J, Chen Y, Mo Y, Wachsman E, Hu L. Sci. Adv., 2017, 3: e1601659.

[97]

Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K K, Pastel G, Lin C F, Mo Y, Wachsman E D, Hu L. Adv. Mater, 2017, 29: 1606042.

[98]

He M, Cui Z, Chen C, Li Y, Guo X. Journal of Materials Chemistry A, 2018, 6: 11463.

[99]

Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X. Rare Metals, 2018, 37: 473.

[100]

Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W, Wachsman E D, Hu L. Nano Lett., 2017, 17: 565.

[101]

Zhou C, Samson A J, Hofstetter K, Thangadurai V. Sustainable Energy & Fuels, 2018, 2: 2165.

[102]

Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L. ACS Energy Letters, 2018, 3: 1212.

[103]

Xu H, Li Y, Zhou A, Wu N, Xin S, Li Z, Goodenough J B. Nano Lett., 2018, 18: 7414.

[104]

Chen Y, He M, Zhao N, Fu J, Huo H, Zhang T, Li Y, Xu F, Guo X. Journal of Power Sources, 2019, 420: 15.

[105]

Park K, Yu B C, Jung J W, Li Y, Zhou W, Gao H, Son S, Goodenough J B. Chemistry of Materials, 201, 28: 8051.

[106]

Xiao Y, Miara L J, Wang Y, Ceder G. Joule, 2019, 3: 1252.

[107]

van den Broek J., Afyon S., Rupp J. L. M., Advanced Energy Materials, 2016, 6

[108]

Huang X, Liu C, Lu Y, Xiu T, Jin J, Badding M E, Wen Z. Journal of Power Sources, 2018, 382: 190.

[109]

Fu K K, Gong Y, Xu S, Zhu Y, Li Y, Dai J, Wang C, Liu B, Pastel G, Xie H, Yao Y, Mo Y, Wachsman E, Hu L. Chemistry of Materials, 2017, 29: 8037.

[110]

Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J, Xiu T, Badding M E, Wen Z. Energy Storage Materials, 2018, 15: 282.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/