Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries

Jilu Zhao , Mei Yang , Nailiang Yang , Jiangyan Wang , Dan Wang

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 313 -319.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 313 -319. DOI: 10.1007/s40242-020-0115-2
Review

Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries

Author information +
History +
PDF

Abstract

High-energy-density lithium-sulfur(Li-S) batteries are drawing dramatic research interests to fulfill the ever-increasing demands of electrical vehicles. However, challenges with the insulating property of sulfur and its lithiation products and its large volume expansion, and the shuttle effect of lithium polysulfides, hinder the commercial application of Li-S batteries. Lots of material design concepts have been developed to address the failure modes. Among them, hollow micro-/nanostructures with abundant compositional and geometrical feasibility have been proved fruitful in addressing the current obstacles of Li-S batteries. Here, typical examples of designing hollow micro-/nanostructures to address the problems of Li-S batteries and simultaneously improve the practical capacity and lifespan are highlighted. In particular, the great effect of structural engineering on minimizing volume change, inhibiting the shuttle effect and catalyzing polysulfide conversion are discussed systematically. Finally, future directions of hollow nanostructure design to enhance the progress of Li-S batteries are also provided.

Keywords

Hollow / Micro-/nanostructure / Lithium-sulfur battery

Cite this article

Download citation ▾
Jilu Zhao, Mei Yang, Nailiang Yang, Jiangyan Wang, Dan Wang. Hollow Micro-/Nanostructure Reviving Lithium-sulfur Batteries. Chemical Research in Chinese Universities, 2020, 36(3): 313-319 DOI:10.1007/s40242-020-0115-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009, 8: 500.

[2]

Elazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Adv. Mater., 2011, 23: 5641.

[3]

Zhao M Q, Zhang Q, Huang J Q, Tian G L, Nie J Q, Peng H J, Wei F. Nat. Commun., 2014, 5: 1.

[4]

Zhang J, Yang C P, Yin Y X, Wan L J, Guo Y G. Adv. Mater., 201, 28: 9539.

[5]

Lyu Z Y, Xu D, Yang L J, Che R C, Feng R, Zhao J, Li Y, Wu Q, Wang X Z, Hu Z. Nano Energy, 2015, 12: 657.

[6]

Evers S, Yim T, Nazar L F. J. Phys. Chem. C, 2012, 116: 19653.

[7]

Zhang J, Shi Y, Ding Y, Zhang W K, Yu G H. Nano Lett., 201, 16: 7276.

[8]

Shi Y, Peng L L, Ding Y, Zhao Y, Yu G H. Chem. Soc. Rev., 2015, 44: 6684.

[9]

Lai X Y, Halpert J E, Wang D. Energy Environ. Sci., 2012, 5: 5604.

[10]

Qi J, Lai X Y, Wang J Y, Tang H J, Ren H, Yang Y, Jin Q, Zhang L J, Yu R B, Ma G H, Su Z G, Zhao H J, Wang D. Chem. Soc. Rev., 2015, 44: 6749.

[11]

Mao D, Wan J W, Wang J Y, Wang D. Adv. Mater., 2019, 31: 1802874.

[12]

Wang J Y, Tang H J, Zhang L J, Ren H, Yu R B, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P, Zhang Y, Wen Y R, Gu L, Ma G H, Su Z G, Tang Z Y, Zhao H J, Wang D. Nat. Energy, 201, 1: 16050.

[13]

Jiao C W, Wang Z M, Zhao X X, Wang H, Wang J, Yu R B, Wang D. Angew. Chem. Int. Ed., 2019, 58: 996.

[14]

Wang J Y, Yang N L, Tang H J, Dong Z H, Jin Q, Yang M, Kisailus D, Zhao H J, Tang Z Y, Wang D. Angew. Chem. Int. Ed., 2013, 52: 6417.

[15]

Ren H, Yu R B, Wang J Y, Jin Q, Yang M, Mao D, Kisailus D, Zhao H J, Wang D. Nano Lett., 2014, 14: 6679.

[16]

Zhao X X, Wang J Y, Yu R B, Wang D. J. Am. Chem. Soc., 2018, 140: 17114.

[17]

Wang J Y, Tang H J, Ren H, Yu R B, Qi J, Mao D, Zhao H J, Wang D. Adv. Sci., 2014, 1: 1400011.

[18]

Zhao X X, Yu R B, Tang H J, Mao D, Qi J, Wang B, Zhang Y, Zhao H J, Hu W P, Wang D. Adv. Mater., 2017, 29: 1700550.

[19]

Xu S M, Hessel C M, Ren H, Yu R B, Jin Q, Yang M, Zhao H J, Wang D. Energy Environ. Sci., 2014, 7: 632.

[20]

Wang J Y, Tang H J, Wang H, Yu R B, Wang D. Mater. Chem. Front., 2017, 1: 414.

[21]

Wang D W, Zeng Q C, Zhou G M, Yin L C, Li F, Cheng H M, Gentle I R, Lu G Q M. J. Mater. Chem. A, 2013, 1: 9382.

[22]

He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L F. ACS Nano, 2013, 7: 10920.

[23]

Zhang C F, Wu H B, Yuan C Z, Guo Z P, Lou X W. Angew. Chem. Int. Ed., 2012, 51: 9592.

[24]

Seh Z W, Li W Y, Cha J J, Zheng G Y, Yang Y, McDowell M T, Hsu P C, Cui Y. Nat. Commun., 2013, 4: 1331.

[25]

Luo D, Li G R, Deng Y P, Zhang Z, Li J D, Liang R L, Li M, Jiang Y, Zhang W W, Liu Y S, Lei W, Yu A P, Chen Z W. Adv. Energy Mater., 2019, 9: 1900228.

[26]

Mi K, Jiang Y, Feng J K, Qian Y T, Xiong S L. Adv. Funct. Mater., 201, 26: 1571.

[27]

Pei F, An T H, Zang J, Zhao X J, Fang X L, Zheng M S, Dong Q F, Zheng N F. Adv. Energy Mater., 201, 6: 1502539.

[28]

Liang Z, Zheng G Y, Li W Y, Seh Z W, Yao H B, Yan K, Kong D S, Cui Y. ACS Nano, 2014, 8: 5249.

[29]

Salhabi E H M, Zhao J L, Wang J Y, Yang M, Wang B, Wang D. Angew. Chem. Int. Ed., 2019, 58: 9078.

[30]

Chen T, Ma L B, Cheng B R, Chen R P, Hu Y, Zhu G Y, Wang Y R, Liang J, Tie Z X, Liu J, Jin Z. Nano Energy, 2017, 38: 239.

[31]

Gao X J, Yang X F, Li M S, Sun Q, Liang J N, Luo J, Wang J W, Li W H, Liang J W, Liu Y L, Wang S Z, Hu Y F, Xiao Q F, Li R Y, Sham T K, Sun X L. Adv. Funct. Mater., 2019, 29: 1806724.

[32]

Ye C, Zhang L, Guo C X, Li D D, Vasileff A, Wang H H, Qiao S Z. Adv. Funct. Mater., 2017, 27: 1702524.

[33]

Chung S H, Manthiram A. J. Phys. Chem. Lett., 2014, 5: 1978.

[34]

Fang D L, Wang Y L, Liu X Z, Yu J, Qian C, Chen S M, Wang X, Zhang S J. ACS Nano, 2019, 13: 1563.

[35]

Chen X X, Ding X Y, Wang C S, Feng Z Y, Xu L Q, Gao X, Zhai Y J, Wang D B. Nanoscale, 2018, 10: 13694.

[36]

Li S S, Jin B, Li H, Dong C W, Zhang B, Xu J H, Jiang Q. J. Electrochem. Soc., 2017, 806: 41.

[37]

Ma J S, Yu M P, Ye H Y, Song H Q, Wang D X, Zhao Y T, Gong W, Qiu H. Mater. Chem. Front., 2019, 3: 1807.

[38]

Zhou G M, Li L, Ma C Q, Wang S G, Shi Y, Koratkar N, Ren W C, Li F, Cheng H M. Nano Energy, 2015, 11: 356.

[39]

Du H P, Zhang Z H, He J J, Cui Z L, Chai J C, Ma J, Yang Z, Huang C S, Cui G L. Small, 2017, 13: 1702277.

[40]

Xu F, Tang Z W, Huang S Q, Chen L Y, Liang Y R, Mai W C, Zhong H, Fu R W, Wu D C. Nat Commun., 2015, 6: 7221.

[41]

Dong Y, Ben T. Chem. Res. Chinese Universities, 2019, 35(4): 654.

[42]

Paraknowitsch J P, Thomas A. Energy Environ. Sci., 2013, 6: 2839.

[43]

Zhou W D, Xiao X C, Cai M, Yang L. Nano Lett., 2014, 14: 5250.

[44]

Mi K, Chen S W, Xi B J, Kai S S, Jiang Y, Feng J K, Qian Y T, Xiong S L. Adv. Funct. Mater., 2017, 27: 1604265.

[45]

Peng Y Y, Zhang Y Y, Huang J X, Wang Y H, Li H, Hwang B J, Zhao J B. Carbon, 2017, 124: 23.

[46]

Zhou G M, Zhao Y B, Manthiram A. Adv. Energy Mater., 2015, 5: 1402263.

[47]

Wang C, Wang J Y, Hu W P, Wang D. Chem. Res. Chinese Universities, 2020, 36(1): 68.

[48]

Jeong Y C, Kim J H, Nam S, Park C R, Yang S J. Adv. Funct. Mater., 2018, 28: 1707411.

[49]

Fan W, Zhang L S, Liu T X. Mater. Chem. Front., 2018, 2: 235.

[50]

Su Y S, Manthiram A. Nat. Commun., 2012, 3: 1166.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/