Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery

Yongtao Wang , Xianwei Guo , Zhiyuan Lin , Yubo Yang , Lingqiao Wu , Huan Liu , Haijun Yu

Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 439 -446.

PDF
Chemical Research in Chinese Universities ›› 2020, Vol. 36 ›› Issue (3) : 439 -446. DOI: 10.1007/s40242-020-0114-2
Article

Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery

Author information +
History +
PDF

Abstract

The sphene-type solid electrolyte with high ionic conductivity has been designed for solid-state lithium metal battery. However, the practical applications of solid electrolytes are still suffered by the low relative density and long sintering time of tens of hours with large energy consumption. Here, we introduced the spark plasma sintering technology for fabricating the sphene-type Li1.125Ta0.875Zr0.125SiO5 solid electrolyte. The dense electrolyte pellet with high relative density of ca. 97.4% and ionic conductivity of ca. 1.44× 10−5 S/cm at 30 °C can be obtained by spark plasma sintering process within the extremely short time of only ca. 0.1 h. Also the solid electrolyte provides stable electrochemical window of ca. 6.0 V(vs. Li+/Li) and high electrochemical interface stability toward Li metal anode. With the enhanced interfacial contacts between electrodes and electrolyte pellet by the in-situ formed polymer electrolyte, the solid-state lithium metal battery with LiFePO4 cathode can deliver the initial discharge capacity of ca. 154 mAh/g at 0.1 C and the reversible capacity of ca. 132 mAh/g after 70 cycles with high Coulombic efficiency of 99.5% at 55 °C. Therefore, this study demonstrates a rapid and energy efficient sintering strategy for fabricating the solid electrolyte with dense structure and high ionic conductivity that can be practically applied in solid-state lithium metal batteries with high energy densities and safeties.

Keywords

Solid-state lithium metal battery / Sphene-type solid electrolyte / Spark plasma sintering / Dense structure / Ionic conductivity

Cite this article

Download citation ▾
Yongtao Wang, Xianwei Guo, Zhiyuan Lin, Yubo Yang, Lingqiao Wu, Huan Liu, Haijun Yu. Dense Sphene-type Solid Electrolyte Through Rapid Sintering for Solid-state Lithium Metal Battery. Chemical Research in Chinese Universities, 2020, 36(3): 439-446 DOI:10.1007/s40242-020-0114-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough J B. Energy Environ. Sci., 2014, 7: 14.

[2]

Zhang X, Yu H. Acc. Chem. Res., 2020, 53: 368.

[3]

He D, Wu T, Wang B, Yang Y, Zhao S, Wang J, Yu H. Chem. Commun., 2019, 55: 2234.

[4]

Lin D, Liu Y, Cui Y. Nat. Nanotechnol., 2017, 12: 194.

[5]

Chen R., Li Q., Yu X., Chen L., Li H., Chem. Rev., 2019, DOI: https://doi.org/10.1021/acs.chemrev.9b00268

[6]

Li H. Joule, 2019, 3: 911.

[7]

Cheng X B, Zhao C Z, Yao Y X, Liu H, Zhang Q. Chemistry, 2019, 5: 74.

[8]

Sun C, Liu J, Gong Y, Wilkinson D P, Zhang J. Nano Energy, 2017, 33: 363.

[9]

Wan J, Xie J, Mackanic D G, Burke W, Bao Z, Cui Y. Materials Today Nano, 2018, 4: 1.

[10]

Robertson A, West A, Ritchie A. Solid State Ionics, 1997, 104: 1.

[11]

Malcherek T, Bosenick A, Cemič L, Fechtelkord M, Guttzeit A. J. Solid State Chem., 2004, 177: 3254.

[12]

Li Y, Han J T, Wang C A, Xie H, Goodenough J B. J. Mater Chem., 2012, 22: 15357.

[13]

Guo X, Hao L, Yang Y, Wang Y, Lu Y, Yu H. J. Mater. Chem. A, 2019, 7: 25915.

[14]

Chan C K, Yang T, Mark Weller J. Electrochim. Acta, 2017, 253: 268.

[15]

Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y. Adv. Mater., 2018, 30: 1705702.

[16]

Zhang B, Tan R, Yang L, Zheng J, Zhang K, Mo S, Lin Z, Pan F. Energy Storage Materials, 2018, 10: 139.

[17]

Luo W., Yu C., Hu L., Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011, 1

[18]

Li M., Wang C., Chen Z., Xu K., Lu J., Chem. Rev., 2020, DOI: https://doi.org/10.1021/acs.chemrev.9b00531

[19]

Hou W, Guo X, Shen X, Amine K, Yu H, Lu J. Nano Energy, 2018, 52: 279.

[20]

Xia S, Wu X, Zhang Z, Cui Y, Liu W. Chemistry, 2019, 5: 753.

[21]

Jiang C, Li H, Wang C. Sci. Bull., 2017, 62: 1473.

[22]

Manthiram A, Yu X, Wang S. Nat. Rev. Mater., 2017, 2: 1.

[23]

Ramakumar S, Deviannapoorani C, Dhivya L, Shankar L S, Murugan R. Prog. Mater. Sci., 2017, 88: 325.

[24]

Chen R, Qu W, Guo X, Li L, Wu F. Mater. Horiz., 201, 3: 487.

[25]

Nolan A M, Zhu Y, He X, Bai Q, Mo Y. Joule, 2018, 2: 2016.

[26]

Zhao N, Khokhar W, Bi Z, Shi C, Guo X, Fan L Z, Nan C W. Joule, 2019, 3: 1190.

[27]

Huang W L, Zhao N, Bi Z J, Shi C, Guo X X, Fan L Z, Nan C W. Materials Today Nano, 2020, 10: 100075.

[28]

Xiong S, He X, Han A, Liu Z, Ren Z, McElhenny B, Nolan A M, Chen S, Mo Y, Chen H. Adv. Energy. Mater., 2019, 9: 1803821.

[29]

Wang Q, Wu J F, Lu Z, Ciucci F, Pang W K, Guo X. Adv. Funct. Mater., 2019, 29: 1904232.

[30]

Cook L, Plante E. Ceram. Trans., 1992, 27: 193.

[31]

Chi C, Katsui H, Tu R, Goto T. Mater. Chem. Phys., 2014, 143: 1338.

[32]

Fan J, Liu H, Shi X, Bai S, Shi X, Chen L. Acta. Mater., 2013, 61: 4297.

[33]

Zhao N, Fang R, He M H, Chen C, Li Y Q, Bi Z J, Guo X X. Rare. Metals., 2018, 37: 473.

[34]

Huo H, Chen Y, Li R, Zhao N, Luo J, Pereira da Silva J G, Mücke R, Kaghazchi P, Guo X, Sun X. Energy & Environmental Science, 2020, 13: 127.

[35]

Lin Z, Guo X, Yu H. Nano Energy, 2017, 41: 646.

[36]

Li Y, Wang Z, Li C, Cao Y, Guo X. J. Power Sources, 2014, 248: 642.

[37]

Narayanan S, Ramezanipour F, Thangadurai V. J. Phys. Chem. C, 2012, 116: 20154.

[38]

Kali R, Mukhopadhyay A. J. Power Sources, 2014, 247: 920.

[39]

Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, Herrmann M. Adv. Eng. Mater., 2014, 16: 830.

[40]

Huang X, Liu C, Lu Y, Xiu T, Jin J, Badding M E, Wen Z. J. Power Sources, 2018, 382: 190.

[41]

Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C. Nat. Mater., 2019, 18: 1278.

[42]

Zhan X, Lai S, Gobet M P, Greenbaum S G, Shirpour M. Phys. Chem. Chem. Phys., 2018, 20: 1447.

[43]

Zhang L C, Yang J F, Gao Y X, Wang X P, Fang Q F, Chen C H. J. Power Sources, 2017, 355: 69.

[44]

Lu Y, Huang X, Song Z, Rui K, Wang Q, Gu S, Yang J, Xiu T, Badding M E, Wen Z. Energy Storage Materials, 2018, 15: 282.

[45]

Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X. Nano Energy, 2019, 61: 119.

[46]

Huo H, Luo J, Thangadurai V, Guo X, Nan C W, Sun X. ACS Energy Lett., 2019, 5: 252.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/